Lattice and Heyting algebra objects in a topos § IV.8

Recall: • A lattice is a poset that has all know products and coproducts (when newed as a category) () a set with 2 distinguished elements \bot , T and two associative and commutative binary operations Λ and V st.: meet join $x \Lambda x = x$ $x \vee x = x$ idempotent $T \Lambda x = x$ $\bot \forall x = x$ $x \Lambda (y \vee x) = x = (x \Lambda y) \vee x$ absorption

Fact: The implication
$$\Rightarrow$$
 in a they ting algebra satisfies:
(i) $(x \Rightarrow x) = T$
(i) $(x \Rightarrow x) = x \land y$
(i) $(x \Rightarrow x) = x \land y$
(i) $(x \Rightarrow y) = x \land y$
(i) $(x \Rightarrow y) = x \land y$
(i) $(x \Rightarrow y) = y$
(i) $(x \Rightarrow y) = y$
(i) $(x \Rightarrow y) = (x \Rightarrow y) \land (x \Rightarrow z)$

Now we will head in a different direction and think about lattices and they ting algos that exist within a category other than Set.

• C: category with finite limits def. A LATTICE ORJECT/INTERNAL LATTICE in C is $L \in Ob(C)$ together with 2 anows: "meet" $\Lambda : L \times L \rightarrow L$ "join" $V : L \times L \rightarrow L$ s.f. the identities in the equational def" of a lattice create a commutative diagram. @ idempotent: $x \wedge x = x$ $\int_{x}^{(x,x)} \int_{x} L \times L \rightarrow L$

(a) The deception have
$$2 \leq \log(20)^{n-2} \leq \log(10)^{n-2} < \log$$

• For La lattice object, can define comesponding partial order on L by: $x \le y$ iff $x \land y = x$

$$\begin{array}{c} \begin{array}{c} \label{eq:constraint} \end{tabular} \begin{array}{c} \end{tabular} \end$$

"

Sub(A) × Sub(A)
$$\longrightarrow$$
 Sub(A)

$$\begin{vmatrix} 2 \\ + \tan(A, \Omega) \\ + \ln(A, \Omega) \\ + \ln(A,$$

$$\sim$$
 Sube (A) is a they ting algebra with the exponential in E/A as its implication operator.

The structure is natural in A:
"Net K: A
$$\rightarrow$$
 B be a morphism in E. And consider the comm. square:
Sube(B) $\xrightarrow{K'}$ Sube(A)
is $\int_{i_{A}} \int_{i_{A}} \int_{i_{$

The 2
(INTERNAL) Set
$$A \in Cb(E)$$
.
The power object PA is an internal Heyting algebra.
(In, the subobject classifier $Q := P1$ is an internal Hayting algebra).
The structure is inclured in A :
(Internal difference) is network in A :
(Internal difference) is E^{-1} .
The network is an external traying algebra so that the conversal isomorphism
(Internal difference) is E^{-1} .
(Internal difference)

So we have ∧ : PA × PA → PA where for any $X \in E$, the meet operation on $Hom_{E}(X, PA)$ induced by composition corresponds to meet in the lattice $Sub_{\varepsilon}(A \times X)$ via the iso. $Ham_{\varepsilon}(X, PA) \cong Sub_{\varepsilon}(A \times X)$ • Other ops are defined similarly. (eg) The (⇒) operation [For each $X \in Ob(E)$, $Sub_{E}(A \times X)$ has an implication operator $\Rightarrow: Sub_{\mathcal{E}}(A \times X) \times Sub_{\mathcal{E}}(A \times X) \longrightarrow Sub_{\mathcal{E}}(A \times X)$ that is natural in X. $\longrightarrow \exists! \Rightarrow_{\times} (natural in X)$ such that the fillowing commutes: $Sub_{\epsilon}(A \times X) \times Sub_{\epsilon}(A \times X)$ $Sub_{\epsilon}(A \times X)$ 2 $\#_{\mathsf{om}_{\varepsilon}}(X, \mathsf{PA}) \times \#_{\mathsf{om}_{\varepsilon}}(X, \mathsf{PA})$ $H_{am_{\mathcal{E}}}(X, PA \times PA) \longrightarrow_{\times}$ ------) Ham_e(X,PA) / by Koneda! By naturality of =>x in X, then it must be induced (via composition) by a uniquely differmined map $\Rightarrow : PA \times PA \longrightarrow PA$

· Top and boffor elements: similar

Since
$$(k \cdot 1)^7$$
 is a they ting alg. hom, so is $\text{Hom}_{\varepsilon}(X, Pk)$ freach X in ε .
 $\Rightarrow \text{Pk}$ is a hom of internal they find algebras
(definitions)

Rem: Internal Heyting alg. structure on \mathcal{L} is the unique one such that Sube $(X) \xrightarrow{\sim} Hom_{\varepsilon}(X, \mathcal{L})$ is a Heyting alg. isomorphism.