
Noetherian Rings and Affine Algebraic Sets

Fall 2017

For reference: I will be using section 15.1 of Dummit and Foote.

Throughout this section: R is a commutative ring with 1 6= 0.

– Recall the definition of a Noetherian ring R: There are no infinite increasing chains

of ideals in R.

Proposition 1. If R is Noetherian and I � R then R/I is also Noetherian. Also, any

homomorphic image of a Noetherian ring is Noetherian.

Proof. If I �R, then any infinite ascending chain of ideals in R/I corresponds to an infinite

ascending chain of ideals in R (by Lattice Isomorphism Theorem):

(R/J)/(J/I) ∼= R/I ∗ ∗

Thus, R/I is Noetherian if R is.

For any homomorphism ϕ : R→ S, the following holds by the First Isomorphism Theorem.

R/ kerϕ ∼= ϕ(R)

As R is Noetherian and kerϕ� R, then by the first part, R/ kerϕ is Noetherian and hence

ϕ(R) is Noetherian by the isomorphism.

Theorem 1. TFAE:

1. R is Noetherian

1



Presentation Notes Mohabat Tarkeshian

2. Every non-empty set of ideals of R cotnains a maximal element under inclusion.

3. Every ideal of R is finitely generated.

– This theorem follows directly by the analogous theorem for modules (taking M = R

as an R-module over itself), then ideals of R correspond exactly to R-submodules of R.

Theorem 2. (Hilbert’s Basis Theorem)

If R is Noetherian, then R[x] is Noetherian.

Proof. To show that R[x] is Noetherian, let I�R[x] be an arbitrary ideal (i.e., will be shown

that I is finitely generated).

Let L = {all leading coefficients of polynomials in I}. L is an ideal of R: 0 ∈ L. Also, let

f = axd + · · ·+, g = bxe + · · ·+ ∈ I be polynomials of degree d and e and leading cofficients

a and b. Let r ∈ R be arbitrary.

⇒ ra− b = 0 or it is the leading coefficient of rf − g

Since 0 ∈ L and (rf − g) ∈ I, then ra− b ∈ L for all r ∈ R, a, b ∈ L. Hence, L�R.

As R is Noetherian, then L is finitely generated. For some ai ∈ R, let

L = 〈a1, a2, . . . , an〉

Associate fi ∈ I with leading coefficient ai for each i = 1, 2, . . . , n. Let:

ei = deg fi;

N = max{e1, e2, . . . , en}

Now, for each d ∈ {0, 1, . . . , N − 1}, let

Ld = {leading coefficients of polynomials in I of degree d} ∪ {0}

Similar argument shows that Ld � R is an ideal. Again as R is Noetherian, then Ld is

finitely generated for each d. For each Ld 6= {0}, let bd,i ∈ R be such that

Ld = 〈bd,1, bd,2, . . . , bd,nd
〉
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Associate a polynomial fd,i ∈ I of degree d with leading coefficient bd,i.

Claim:

I = 〈{f1, f2, . . . , fn} ∪ {fd,i | 0 ≤ d < N, q ≤ i ≤ nd}〉

To show this, denote I ′ = 〈{f1, f2, . . . , fn} ∪ {fd,i | 0 ≤ d < N, q ≤ i ≤ nd}〉.

Clear that I ′ ⊂ I since all generators are elements of I.

On the other hand, if I 6= I ′, then there exists f 6= 0, f ∈ I of minimum degree with

f /∈ I ′.

Let d = deg f and a the leading coefficient of f .

First, suppose d ≥ N . Since a ∈ L, can write a as an R-linear combination of the

generators of L:

a = r1a1 + · · ·+ rnan

Then,

g = r1x
d−e1f1 + · · ·+ rnx

d−enfn ∈ I ′

and deg g = d and the leading coefficient of g is a. Then, f − g ∈ I is a polynomial in I

of smlaler degree than f . By minimality of f , this implies that f − g = 0 ⇒ f = g ∈ I ′,

�contradiction.

Now, suppose d < N . Then a ∈ Ld for some d < N , so can write

a = r1bd,1 + · · ·+ rnd
bd,nd

for some ri ∈ R. Then,

g = r1fd,1 + · · ·+ rnd
fnd
∈ I ′

and deg g = d and leading coefficient a⇒ leads to the same contradiction as before.

⇒ , I = I ′ and so I is finitely generated ⇒ R[x] is Noetherian.

Corollary 2. The polynomial ring k[x1, x2, . . . , xn] with coefficients from a field k is Noethe-

rian.
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Definition 3. For a field k, a ring R is a k-algebra if k ⊆ Z(R) and 1k = 1R.

Definition 4. A finitely generated k-algebra R is generated by k together with some finite

set {r1, r2, . . . , rn} ⊂ R.

Definition 5. A k-algebra homomorphism between two k-algebras R and S is a ring homo-

morphism ψ : R→ S that is the identity on k: ψ|k = idk.

Remark 6. If R is a k-algebra⇒ R is both a ring and a vector space over k. BUT, distinguish

the generators:

• The polynomial ringR = k[x1, x2, . . . , xn] is a finitely generated k-algebra since x1, x2, . . . , xn

are ring generators.

• For n > 0, R is infinite dimensional as a vector space over k.

Corollary 7. The ring R is a finitely generated k-algebra if and only if there is some surjec-

tive k-algebra homomorphism ϕ : k[x1, x2, . . . , xn] → R from the polynomial ring in a finite

number of variables onto R that is the identity map on k. Any finitely generated k-algebra

is therefore Noetherian.

Proof. ⇒ First, if R is finitely generated as a k-algebra by r1, r2, . . . , rn, define

ϕ : k[x1, x2, . . . , xn]→ R

ϕ : xi 7→ ri for all i and

ϕ : a 7→ a for all a ∈ k

⇒ ϕ extends uniquely to a surjective ring homomoprhism.

⇐ On the other hand, if ϕ : k[x1, x2, . . . , xn]→ R is a surjective ring homomorphism, then

the images of x1, x2, . . . , xn generate R as a k-algebra, then R is finitely generated.

i.e., for any finitely generated k-algebra R, by the first isomorphism theorem:

k[x1, . . . , xn]/ kerϕ ∼= R
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Since k[x1, x2, . . . , xn] is Noetherian, any finitely generated k-algebra is thus a quotient of

a Noetherian ring ⇒ hence also Noetherian by proposition (any homomorphic image of a

Noetherian ring is Noetherian).

Basic idea behind algebraic geometry : To equate geometric questions with algebraic ques-

tions involving ideals in rings such as k[x1, x2, . . . , xn].

– Noetherian nature of these rings reduces questions to finitely many algebraic equa-

tions.

– First consider the principal geometric object: An algebraic set of points.

1 Affine Algebraic Sets

Definition 8. Affine n-space over k: The set An of n-tuples of elements of the field k.

Definition 9. k[An]: coordinate ring of An → Viewing polynomials in k[x1, x2, . . . , xn] as

k-valued functions f : An → k on An by evaluating f at the points in An:

k[An] = {f : An → k | f ∈ k[x1, x2, . . . , xn], f(a1, a2, . . . , an) ∈ k}

Define Z(S) for any S ⊂ k[An] as the set of points where all functions in S are zero:

Z(S) = {(a1, a2, . . . , an) ∈ An | f(a1, a2, . . . , an) = 0 for all f ∈ S}

where

Z(∅) = An

Definition 10. An Affine Algebraic Set is a subset V ⊂ An such that V is the set of common

zeros of some set S of polynomials.

– i.e., V = Z(S) for some S ⊂ k[An]⇒ V is called the locus of S in An.

– If S = {f} or {f1, f2, . . . , fm}: we write Z(f) or Z(f1, . . . , fm) and call it the locus

of f or f1, f2, . . . , fm.
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– Note: locus of a single polynomial in the form f − g is the same as the solutions in

affine n-space of the equation f = g ⇒ affine algebraic sets are the solution sets to systems

of polynomial equations.

Example 11. If n = 1, then Z(f) = {the set of roots of f in k} for f ∈ k[x].

– Algebraic sets in A1 are ∅, any finite set, and k.

Example 12. Any finite subset of An is an algebraic set:

Since {(a1, a2, . . . , an)} = Z(x1 − a1, x2 − a2, . . . , xn − an).

Example 13. Can define lines, planes in An: called linear algebraic sets: the loci of sets of

linear polynomials of k[x1, x2, . . . , xn].

e.g., a line in A2 is defined by ax + by = c which is the locus of the polynomial f(x, y) =

ax+ by − c ∈ k[x, y].

– a line in A3 is the locus of 2 linear polynomials of k[x, y, z] that are not multiples

of each other.

 The coordinate axes, coordinate planes, etc. in An are all algebraic sets.

– e.g., the x-axis in A3 is the zero set Z(y, z) and the xy-plane is the zero set Z(z).

Remark 14. Z(f) for a nonconstant polynomial f : called hypersurface in An.

e.g., Z(y − x2) is the parabola y = x2.

- Z(x2 + y2 − 1) is the unit circle.

- Z(xy − 1) is the hyperbola y = 1
x
.

Properties of Affine Algebraic Sets

Let S, T ⊂ k[An].

1. If S ⊂ T then Z(T ) ⊂ Z(S) (Z is contravariant).

2. Z(S) = Z(I) where I = (S) is the ideal in k[An] generated by S.
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3. Intersection is an algebraic set. In fact:

Z(S) ∩ Z(T ) = Z(S ∪ T )

Generally: an arbitrary interscetion of algebraic sets is an algebriac set.

4. Union of 2 algebraic sets is an algebraic set:

Z(I) ∪ Z(J) = Z(IJ)

Where I and J are ideals.

5. Z(0) = An and Z(1) = ∅ (0 and 1 constant functions)

By property (2), every algebraic set is the algebraic set corresponding to an ideal

of the coordinate ring:

Z : {ideals of k[An]} → {affine algebraic sets in An}

Since every ideal I in Noetherian ring k[x1, x2, . . . , xn] is finitely generated, I = (f1, f2, . . . , fq),

then from property (3);

Z(I) = Z(f1) ∩ Z(f2) ∩ · · · ∩ Z(fq)

⇒ every algebraic set is the intersection of a finte number of hypersurfaces in

An.

– If V is an algebraic set in An, there may be many ideals I such that V = Z(I). i.e.,

the zeros of any polynomial are the same as the zeros of all its positive powers. So

Z(I) = Z(Ik) for all k ≥ 1

Definition 15. A unique largest ideal that determines V : The set of ALL polynomials that

vanish on V .

For any subset A ⊂ An, define I as the following:

I(A) = {f ∈ k[x1, x2, . . . , xn] | f(a1, a2, . . . , an) = 0 for all (a1, a2, . . . , an) ∈ A}
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⇒ I(A) � k[x1, x2, . . . , xn] is an ideal and it is the unique largest ideal of functions

that are identically zero on A. Defines a correspondence:

I : {subsets in An} → {ideals of k[An]}

Example 16. In Euclidean plane, I (the x-axis) is the ideal generated by y in the coordinate

ring R[x, y].

Example 17. Over any field k, ideal of functions vanishing at (a1, a2, . . . , an) ∈ An is a

maximal ideal since it is the kernel of the surjective ring homomorphism:

ϕ : k[x1, x2, . . . , xn]→ k

ϕ : f(x1, x2, . . . , xn) 7→ f(a1, a2, . . . , an)

⇒ kerϕ = (a1, a2, . . . , an)

⇒ k[x1, x2, . . . , xn]/(a1, a2, . . . , an) ∼= k

Since k is a field, then (a1, a2, . . . , an) � k[x1, x2, . . . , xn] is maximal. And thus:

I((a1, a2, . . . , an)) = (x1 − a1, x2 − a2, . . . , xn − an)

Properties of the map I Let A,B ⊂ An.

1. If A ⊂ B, then I(B) ⊂ I(A) (I is also contravariant).

2. I(A ∪B) = I(A) ∩ I(B).

3. I(∅) = k[x1, x2, . . . , xn] and if k is infinite, I(An) = 0.

4. A ⊂ Z(I(A)) and if I is any ideal, then I ⊂ I(Z(I)).

5. If V = Z(I) is an algebraic set then V = Z(I(V )) and if I = I(A), then I(Z(I)) = I.

– i.e.,

Z(I(Z(I))) = Z(I) and

I(Z(I(A))) = I(A)
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- Last property shows that Z and I act as inverses of each other provided one restricts to

the colelction of algebraic sets V = Z(I) ∈ An and to the set of ideals in k[An] of the form

I(V ).

Definition 18. If V ⊂ An is an algebraic set, k[An]/I(V ): the coordinate ring of V , denoted

by k[V ].

Remark 19. For V = An and k infinite ⇒ I(V ) = 0 (so terminology extends here).

– Polynomials in k[An] define k-valued functions on V simply by restricting these

functions on An to the subset V .

– 2 such polynomial functions f and g define the SAME function on V iff f − g = 0

on V , i.e., f − g ∈ I(V ).

⇒ the cosets f = f + I(V ) are precisely the restrictions to V of ordinary polynomial

functions f from An to k.

– If xi denotes the ith coordinate function on An (i.e., projecting an n-tuple onto its

ith component), then the restriction xi of xi to V is an element of k[V ] (just gives the ith

component of the elements in V viewed as a subset of An).

⇒ k[V ] is finitely generated as a k-algebra by x1, . . . , xn.

Example 20.

V = Z(xy − 1), this is the hyperbola y = 1
x
∈ R2.

⇒ R[V ] = R[x, y]/(xy − 1)

Then the polynomials f(x, y) = x and g(x, y) = x + (xy − 1) (different functions on R2)

define the same function on the subset V.

e.g., at the point (1
2
, 2) ∈ V , f(1

2
, 2) = g(1

2
, 2) = 1

2
.

In the quotient ring R[V ],

xy = 1

⇒ R[V ] ∼= R
[
x,

1

x

]
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So for any function f ∈ R[V ] and any (a, b) ∈ V ,

f(a, b) = f

(
a,

1

a

)
where f ∈ k[x, y] 7→ f ∈ k[V ].

Let V ⊂ An and W ⊂ Am be two algebraic sets.

– Most natural algebraic maps between V and W will be defined by polynomials (since

the sets are defined by the vanishing of polynomials).

Definition 21. A morphism of algebraic sets is a map ϕ : V → W such that there exist

polynomials ϕ1, ϕ2, . . . , ϕm ∈ k[x1, x2, . . . , xn] such that

ϕ((a1, a2, . . . , an)) = (ϕ1(a1, a2, . . . , an), . . . , ϕm(a1, a2, . . . , an))

for all (a1, a2, . . . , an) ∈ V .

The map ϕ : V → W is an isomorphism of algberaic sets if there is a morphism

ψ : W → V with

ϕ ◦ ψ = 1W and ψ ◦ ϕ = 1V

– morphism of algebraic sets is also called a polynomial map or regular map of algebraic

sets.

Remark 22. In general, the polynomials ϕ1, ϕ2, . . . , ϕm ∈ k[x1, x2, . . . , xn] are NOT uniquely

defined.

e.g., both f = x and g = x+ (xy− 1) in the preceding example define the same morphism

from V = Z(xy − 1) to W = A1.
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