Noetherian Rings and Affine Algebraic Sets Fall 2017

For reference: I will be using section 15.1 of Dummit and Foote.

Throughout this section: R is a commutative ring with $1 \neq 0$.

- Recall the definition of a Noetherian ring R: There are no infinite increasing chains of ideals in R.

Proposition 1. If R is Noetherian and $I \leq R$ then R/I is also Noetherian. Also, any homomorphic image of a Noetherian ring is Noetherian.

Proof. If $I \leq R$, then any infinite ascending chain of ideals in R/I corresponds to an infinite ascending chain of ideals in R (by *Lattice Isomorphism Theorem*):

$$(R/J)/(J/I) \cong R/I * *$$

Thus, R/I is Noetherian if R is.

For any homomorphism $\varphi: R \to S$, the following holds by the First Isomorphism Theorem.

$$R/\ker\varphi\cong\varphi(R)$$

As R is Noetherian and ker $\varphi \leq R$, then by the first part, $R/\ker \varphi$ is Noetherian and hence $\varphi(R)$ is Noetherian by the isomorphism.

Theorem 1. TFAE:

1. R is Noetherian

2. Every non-empty set of ideals of R cotnains a maximal element under inclusion.

3. Every ideal of R is finitely generated.

- This theorem follows directly by the analogous theorem for modules (taking M = R as an *R*-module over itself), then ideals of *R* correspond exactly to *R*-submodules of *R*.

Theorem 2. (Hilbert's Basis Theorem)

If R is Noetherian, then R[x] is Noetherian.

Proof. To show that R[x] is Noetherian, let $I \leq R[x]$ be an arbitrary ideal (i.e., will be shown that I is finitely generated).

Let $L = \{ \text{all leading coefficients of polynomials in } I \}$. L is an ideal of $R: 0 \in L$. Also, let $f = ax^d + \dots + g = bx^e + \dots + \in I$ be polynomials of degree d and e and leading cofficients a and b. Let $r \in R$ be arbitrary.

 \Rightarrow ra - b = 0 or it is the leading coefficient of rf - g

Since $0 \in L$ and $(rf - g) \in I$, then $ra - b \in L$ for all $r \in R, a, b \in L$. Hence, $L \leq R$.

As R is Noetherian, then L is finitely generated. For some $a_i \in R$, let

$$L = \langle a_1, a_2, \dots, a_n \rangle$$

Associate $f_i \in I$ with leading coefficient a_i for each i = 1, 2, ..., n. Let:

$$e_i = \deg f_i;$$

 $N = \max\{e_1, e_2, \dots, e_n\}$

Now, for each $d \in \{0, 1, ..., N - 1\}$, let

$$L_d = \{ \text{leading coefficients of polynomials in } I \text{ of degree d} \} \cup \{ 0 \}$$

Similar argument shows that $L_d \leq R$ is an ideal. Again as R is Noetherian, then L_d is finitely generated for each d. For each $L_d \neq \{0\}$, let $b_{d,i} \in R$ be such that

$$L_d = \langle b_{d,1}, b_{d,2}, \dots, b_{d,n_d} \rangle$$

Associate a polynomial $f_{d,i} \in I$ of degree d with leading coefficient $b_{d,i}$.

Claim:

$$I = \langle \{f_1, f_2, \dots, f_n\} \cup \{f_{d,i} \mid 0 \le d < N, q \le i \le n_d\} \rangle$$

To show this, denote $I' = \langle \{f_1, f_2, ..., f_n\} \cup \{f_{d,i} \mid 0 \le d < N, q \le i \le n_d\} \rangle.$

Clear that $I' \subset I$ since all generators are elements of I.

On the other hand, if $I \neq I'$, then there exists $f \neq 0, f \in I$ of minimum degree with $f \notin I'$.

Let $d = \deg f$ and a the leading coefficient of f.

First, suppose $d \ge N$. Since $a \in L$, can write a as an R-linear combination of the generators of L:

$$a = r_1 a_1 + \dots + r_n a_n$$

Then,

$$g = r_1 x^{d-e_1} f_1 + \dots + r_n x^{d-e_n} f_n \in I'$$

and deg g = d and the leading coefficient of g is a. Then, $f - g \in I$ is a polynomial in I of smlaler degree than f. By *minimality* of f, this implies that $f - g = 0 \Rightarrow f = g \in I'$, 4contradiction.

Now, suppose d < N. Then $a \in L_d$ for some d < N, so can write

$$a = r_1 b_{d,1} + \dots + r_{n_d} b_{d,n_d}$$

for some $r_i \in R$. Then,

$$g = r_1 f_{d,1} + \dots + r_{n_d} f_{n_d} \in I'$$

and deg g = d and leading coefficient $a \Rightarrow$ leads to the same contradiction as before.

 \Rightarrow , I = I' and so I is finitely generated $\Rightarrow R[x]$ is Noetherian.

Corollary 2. The polynomial ring $k[x_1, x_2, ..., x_n]$ with coefficients from a field k is Noetherian.

Definition 3. For a field k, a ring R is a k-algebra if $k \subseteq Z(R)$ and $1_k = 1_R$.

Definition 4. A finitely generated k-algebra R is generated by k together with some finite set $\{r_1, r_2, \ldots, r_n\} \subset R$.

Definition 5. A k-algebra homomorphism between two k-algebras R and S is a ring homomorphism $\psi : R \to S$ that is the identity on $k: \psi|_k = \mathrm{id}_k$.

Remark 6. If R is a k-algebra \Rightarrow R is both a ring and a vector space over k. BUT, distinguish the generators:

- The polynomial ring $R = k[x_1, x_2, ..., x_n]$ is a finitely generated k-algebra since $x_1, x_2, ..., x_n$ are ring generators.
- For n > 0, R is infinite dimensional as a vector space over k.

Corollary 7. The ring R is a finitely generated k-algebra if and only if there is some surjective k-algebra homomorphism $\varphi : k[x_1, x_2, \dots, x_n] \to R$ from the polynomial ring in a finite number of variables onto R that is the identity map on k. Any finitely generated k-algebra is therefore Noetherian.

Proof. \Rightarrow First, if R is finitely generated as a k-algebra by r_1, r_2, \ldots, r_n , define

```
\varphi : k[x_1, x_2, \dots, x_n] \to R\varphi : x_i \mapsto r_i \text{ for all } i \text{ and}\varphi : a \mapsto a \text{ for all } a \in k
```

 $\Rightarrow \varphi$ extends uniquely to a surjective ring homomorphism.

 \Leftarrow On the other hand, if $\varphi : k[x_1, x_2, \dots, x_n] \to R$ is a surjective ring homomorphism, then the images of x_1, x_2, \dots, x_n generate R as a k-algebra, then R is finitely generated.

i.e., for any finitely generated k-algebra R, by the first isomorphism theorem:

$$k[x_1,\ldots,x_n]/\ker\varphi\cong R$$

Since $k[x_1, x_2, ..., x_n]$ is Noetherian, any finitely generated k-algebra is thus a quotient of a Noetherian ring \Rightarrow hence also Noetherian by proposition (any homomorphic image of a Noetherian ring is Noetherian).

Basic idea behind *algebraic geometry*: To equate geometric questions with algebraic questions involving ideals in rings such as $k[x_1, x_2, \ldots, x_n]$.

 Noetherian nature of these rings reduces questions to finitely many algebraic equations.

- First consider the principal geometric object: An *algebraic set* of points.

1 Affine Algebraic Sets

Definition 8. Affine n-space over k: The set \mathbb{A}^n of n-tuples of elements of the field k.

Definition 9. $k[\mathbb{A}^n]$: coordinate ring of $\mathbb{A}^n \to \text{Viewing polynomials in } k[x_1, x_2, \dots, x_n]$ as k-valued functions $f : \mathbb{A}^n \to k$ on \mathbb{A}^n by evaluating f at the points in \mathbb{A}^n :

$$k[\mathbb{A}^n] = \{ f : \mathbb{A}^n \to k \mid f \in k[x_1, x_2, \dots, x_n], f(a_1, a_2, \dots, a_n) \in k \}$$

Define $\mathcal{Z}(S)$ for any $S \subset k[\mathbb{A}^n]$ as the set of points where all functions in S are zero:

$$\mathcal{Z}(S) = \{(a_1, a_2, \dots, a_n) \in \mathbb{A}^n \mid f(a_1, a_2, \dots, a_n) = 0 \text{ for all } f \in S\}$$

where

$$\mathcal{Z}(\varnothing) = \mathbb{A}^n$$

Definition 10. An Affine Algebraic Set is a subset $V \subset \mathbb{A}^n$ such that V is the set of common zeros of some set S of polynomials.

- i.e., $V = \mathcal{Z}(S)$ for some $S \subset k[\mathbb{A}^n] \Rightarrow V$ is called the locus of S in \mathbb{A}^n .

- If $S = \{f\}$ or $\{f_1, f_2, \ldots, f_m\}$: we write $\mathcal{Z}(f)$ or $\mathcal{Z}(f_1, \ldots, f_m)$ and call it the locus of f or f_1, f_2, \ldots, f_m .

- Note: locus of a single polynomial in the form f - g is the same as the solutions in affine *n*-space of the equation $f = g \Rightarrow$ affine algebraic sets are the solution sets to systems of polynomial equations.

Example 11. If n = 1, then $\mathcal{Z}(f) = \{$ the set of roots of f in $k \}$ for $f \in k[x]$.

- Algebraic sets in \mathbb{A}^1 are \emptyset , any finite set, and k.

Example 12. Any finite subset of \mathbb{A}^n is an algebraic set:

Since $\{(a_1, a_2, \dots, a_n)\} = \mathcal{Z}(x_1 - a_1, x_2 - a_2, \dots, x_n - a_n).$

Example 13. Can define lines, planes in \mathbb{A}^n : called *linear algebraic sets*: the loci of sets of linear polynomials of $k[x_1, x_2, \ldots, x_n]$.

e.g., a line in \mathbb{A}^2 is defined by ax + by = c which is the locus of the polynomial $f(x, y) = ax + by - c \in k[x, y]$.

– a line in \mathbb{A}^3 is the locus of 2 linear polynomials of k[x, y, z] that are not multiples of each other.

 \rightsquigarrow The coordinate axes, coordinate planes, etc. in \mathbb{A}^n are all algebraic sets.

- e.g., the x-axis in \mathbb{A}^3 is the zero set $\mathcal{Z}(y, z)$ and the xy-plane is the zero set $\mathcal{Z}(z)$.

Remark 14. $\mathcal{Z}(f)$ for a nonconstant polynomial f: called hypersurface in \mathbb{A}^n .

e.g., $\mathcal{Z}(y - x^2)$ is the parabola $y = x^2$.

- $\mathcal{Z}(x^2 + y^2 - 1)$ is the unit circle.

- $\mathcal{Z}(xy-1)$ is the hyperbola $y = \frac{1}{x}$.

Properties of Affine Algebraic Sets

Let $S, T \subset k[\mathbb{A}^n]$.

- 1. If $S \subset T$ then $\mathcal{Z}(T) \subset \mathcal{Z}(S)$ (\mathcal{Z} is contravariant).
- 2. $\mathcal{Z}(S) = \mathcal{Z}(I)$ where I = (S) is the ideal in $k[\mathbb{A}^n]$ generated by S.

3. Intersection is an algebraic set. In fact:

$$\mathcal{Z}(S) \cap \mathcal{Z}(T) = \mathcal{Z}(S \cup T)$$

Generally: an arbitrary interscetion of algebraic sets is an algebraic set.

4. Union of 2 algebraic sets is an algebraic set:

$$\mathcal{Z}(I) \cup \mathcal{Z}(J) = \mathcal{Z}(IJ)$$

Where I and J are ideals.

5. $\mathcal{Z}(0) = \mathbb{A}^n$ and $\mathcal{Z}(1) = \emptyset$ (0 and 1 constant functions)

By property (2), every algebraic set is the algebraic set corresponding to an *ideal* of the coordinate ring:

 $\mathcal{Z}: \{ \text{ideals of } k[\mathbb{A}^n] \} \to \{ \text{affine algebraic sets in } \mathbb{A}^n \}$

Since every ideal I in Noetherian ring $k[x_1, x_2, ..., x_n]$ is finitely generated, $I = (f_1, f_2, ..., f_q)$, then from property (3);

$$\mathcal{Z}(I) = \mathcal{Z}(f_1) \cap \mathcal{Z}(f_2) \cap \dots \cap \mathcal{Z}(f_q)$$

 \Rightarrow every algebraic set is the intersection of a finte number of hypersurfaces in \mathbb{A}^n .

- If V is an algebraic set in \mathbb{A}^n , there may be many ideals I such that $V = \mathcal{Z}(I)$. i.e., the zeros of any polynomial are the same as the zeros of all its positive powers. So

$$\mathcal{Z}(I) = \mathcal{Z}(I^k)$$
 for all $k \ge 1$

Definition 15. A unique largest ideal that determines V: The set of ALL polynomials that vanish on V.

For any subset $A \subset \mathbb{A}^n$, define \mathcal{I} as the following:

$$\mathcal{I}(A) = \{ f \in k[x_1, x_2, \dots, x_n] \mid f(a_1, a_2, \dots, a_n) = 0 \text{ for all } (a_1, a_2, \dots, a_n) \in A \}$$

 $\Rightarrow \mathcal{I}(A) \leq k[x_1, x_2, \dots, x_n]$ is an ideal and it is the *unique* largest ideal of functions that are **identically zero on** A. Defines a correspondence:

$$\mathcal{I}: \{ \text{subsets in } \mathbb{A}^n \} \to \{ \text{ideals of } k[\mathbb{A}^n] \}$$

Example 16. In Euclidean plane, \mathcal{I} (the *x*-axis) is the ideal generated by *y* in the coordinate ring $\mathbb{R}[x, y]$.

Example 17. Over any field k, ideal of functions vanishing at $(a_1, a_2, \ldots, a_n) \in \mathbb{A}^n$ is a maximal ideal since it is the kernel of the surjective ring homomorphism:

$$\varphi : k[x_1, x_2, \dots, x_n] \to k$$
$$\varphi : f(x_1, x_2, \dots, x_n) \mapsto f(a_1, a_2, \dots, a_n)$$
$$\Rightarrow \quad \ker \varphi = (a_1, a_2, \dots, a_n)$$
$$\Rightarrow \quad k[x_1, x_2, \dots, x_n]/(a_1, a_2, \dots, a_n) \cong k$$

Since k is a field, then $(a_1, a_2, \ldots, a_n) \leq k[x_1, x_2, \ldots, x_n]$ is maximal. And thus:

$$\mathcal{I}((a_1, a_2, \dots, a_n)) = (x_1 - a_1, x_2 - a_2, \dots, x_n - a_n)$$

Properties of the map \mathcal{I} Let $A, B \subset \mathbb{A}^n$.

- 1. If $A \subset B$, then $\mathcal{I}(B) \subset \mathcal{I}(A)$ (\mathcal{I} is also *contravariant*).
- 2. $\mathcal{I}(A \cup B) = \mathcal{I}(A) \cap \mathcal{I}(B).$
- 3. $\mathcal{I}(\emptyset) = k[x_1, x_2, \dots, x_n]$ and if k is infinite, $\mathcal{I}(\mathbb{A}^n) = 0$.
- 4. $A \subset \mathcal{Z}(\mathcal{I}(A))$ and if I is any ideal, then $I \subset \mathcal{I}(\mathcal{Z}(I))$.
- 5. If $V = \mathcal{Z}(I)$ is an algebraic set then $V = \mathcal{Z}(\mathcal{I}(V))$ and if $I = \mathcal{I}(A)$, then $\mathcal{I}(\mathcal{Z}(I)) = I$. - i.e.,

$$\mathcal{Z}(\mathcal{I}(\mathcal{Z}(I))) = \mathcal{Z}(I)$$
 and
 $\mathcal{I}(\mathcal{Z}(\mathcal{I}(A))) = \mathcal{I}(A)$

- Last property shows that \mathcal{Z} and \mathcal{I} act as inverses of each other provided one restricts to the collection of algebraic sets $V = \mathcal{Z}(I) \in \mathbb{A}^n$ and to the set of ideals in $k[\mathbb{A}^n]$ of the form $\mathcal{I}(V)$.

Definition 18. If $V \subset \mathbb{A}^n$ is an algebraic set, $k[\mathbb{A}^n]/\mathcal{I}(V)$: the coordinate ring of V, denoted by k[V].

Remark 19. For $V = \mathbb{A}^n$ and k infinite $\Rightarrow \mathcal{I}(V) = 0$ (so terminology extends here).

– Polynomials in $k[\mathbb{A}^n]$ define k-valued functions on V simply by restricting these functions on \mathbb{A}^n to the subset V.

- 2 such polynomial functions f and g define the SAME function on V iff f - g = 0on V, i.e., $f - g \in \mathcal{I}(V)$.

 $\Rightarrow \quad \text{the cosets } \overline{f} = f + \mathcal{I}(V) \text{ are precisely the restrictions to } V \text{ of ordinary polynomial} \\ \text{functions } f \text{ from } \mathbb{A}^n \text{ to } k.$

- If x_i denotes the i^{th} coordinate function on \mathbb{A}^n (i.e., projecting an *n*-tuple onto its i^{th} component), then the restriction \overline{x}_i of x_i to V is an element of k[V] (just gives the i^{th} component of the elements in V viewed as a subset of \mathbb{A}^n).

 $\Rightarrow k[V]$ is finitely generated as a k-algebra by $\overline{x}_1, \ldots, \overline{x}_n$.

Example 20.

 $V = \mathcal{Z}(xy - 1)$, this is the hyperbola $y = \frac{1}{x} \in \mathbb{R}^2$.

 $\Rightarrow \quad \mathbb{R}[V] = \mathbb{R}[x, y] / (xy - 1)$

Then the polynomials f(x, y) = x and g(x, y) = x + (xy - 1) (different functions on \mathbb{R}^2) define the same function on the subset V.

e.g., at the point $(\frac{1}{2}, 2) \in V$, $f(\frac{1}{2}, 2) = g(\frac{1}{2}, 2) = \frac{1}{2}$.

In the quotient ring $\mathbb{R}[V]$,

$$\overline{xy} = 1$$
$$\Rightarrow \quad \mathbb{R}[V] \cong \mathbb{R}\left[x, \frac{1}{x}\right]$$

So for any function $\overline{f} \in \mathbb{R}[V]$ and any $(a, b) \in V$,

$$\overline{f}(a,b) = f\left(a,\frac{1}{a}\right)$$

where $f \in k[x, y] \mapsto \overline{f} \in k[V]$.

Let $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^m$ be two algebraic sets.

- Most natural algebraic maps between V and W will be defined by polynomials (since the sets are defined by the vanishing of polynomials).

Definition 21. A morphism of algebraic sets is a map $\varphi : V \to W$ such that there exist polynomials $\varphi_1, \varphi_2, \ldots, \varphi_m \in k[x_1, x_2, \ldots, x_n]$ such that

$$\varphi((a_1, a_2, \dots, a_n)) = (\varphi_1(a_1, a_2, \dots, a_n), \dots, \varphi_m(a_1, a_2, \dots, a_n))$$

for all $(a_1, a_2, \ldots, a_n) \in V$.

The map $\varphi: V \to W$ is an isomorphism of algberaic sets if there is a morphism

 $\psi: W \to V$ with

$$\varphi \circ \psi = 1_W$$
 and $\psi \circ \varphi = 1_V$

morphism of algebraic sets is also called a *polynomial map* or *regular map* of algebraic sets.

Remark 22. In general, the polynomials $\varphi_1, \varphi_2, \ldots, \varphi_m \in k[x_1, x_2, \ldots, x_n]$ are NOT uniquely defined.

e.g., both f = x and g = x + (xy - 1) in the preceding example define the same morphism from $V = \mathcal{Z}(xy - 1)$ to $W = \mathbb{A}^1$.