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Presentation notes guideline:

• To be written on the board.

• To be said out loud.

Ex: A graph Γ is given by a vertex set V and an edge set E, e.g.,

V = {1, 2, 3, 4}
E = {{2, 3}, {1, 4}, {2, 4}, {4}}

Visually, we have:

3 4

1 2

A graph is finite if its vertex set V is finite. Running assumption in this section is that

our graphs and groups are finite.

Def (5.4.1): Γ graph with V = {v1, v2, . . . , vn} and E its edge set. The adjacency matrix of Γ

(wrt V ) is the n× n-matrix A = (aij)i,j where

aij =

1, {vi, vj} ∈ E
0, else

That is, there is a 1 in the (ij)-entry iff there exists an edge between vertex i and vertex

j.

Ex: For the above graph,

A =


0 0 0 1

0 0 1 1

0 1 0 0

1 1 0 1


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Note: Adjacency matrix is always symmetric. Since if {vi, vj} ∈ E, then {vj, vi} ∈ E
(undirected nature).

⇒ Always diagonalizable with real eigenvalues (spectral theorem).

Def: Set of eigenvalues of an adjacency matrix for a graph is called the spectrum of

the graph.

Note: The spectrum does not depend on the ordering of the vertices.

For any relabelling σ of the vertices of a graph, the adjacency matrix is conjugate to a

permutation matrix (corresponding to permuting the rows/columns according to σ).

Note: Spectrum of a graph reveals important information:

- Using the spectrum and the fact that A is always diagonalizable, we can easily

compute the powers of A. (An)ij is the number of paths of length n from vi to vj.

- Spectral graph theory is an area of graph theory that studies graphs via their

eigenvalues.

- Spectrum is used in random walks on graphs, Gerardo will be going into detail

about this in the next presentation.

Given its significance, we can use representation theory to analyze the spectrum of a

type of graph called a Cayley graph for abelian groups.

Goal: To describe the spectrum of a Cayley graph of an abelian group.

Def (5.4.3): A symmetric subset S ⊆ G is a subset s.t.

- e /∈ S; and

- g ∈ S ⇔ g−1 ∈ S

The Cayley graph of G wrt S, Cay(G,S), is the graph with:

• Vertex set V = G;

• Edges: {g, h} ∈ E ⇔ gh−1 ∈ S.

Remark: S can be empty (i.e., no edges).
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Fact: A Cayley graph is connected iff S generates G.

The graph is connected iff for every x ∈ G, x is connected to e ∈ G by a path of edges,

iff every x ∈ G can be written as x = s0s1 · · · sm for si ∈ S,

iff S generates G.

Ex (5.4.5):

G = Z/4Z, S = {[1], [3]} = {±[1]}.

[3] [2]

[0] [1]

Ex (5.4.6):

G = Z/6Z, S = {[1], [5], [2], [4]} = {±[1],±[2]}. (colour coding: ±[1], ±[2]).

[5]

[4] [3]

[0] [1]

[2]

To describe the spectrum of a Cayley graph of an abelian group, we need a result about
the group algebra L(G).

Lemma (5.4.9): G abelian, a ∈ L(G). Define A : L(G)→ L(G) by

A(b) := a ∗ b

Then, A is linear and for all χ ∈ Ĝ, χ is an eigenvector of A with eigenvalue â(χ). i.e.,
A is a diagonalizable operator.

Pf:

As (L(G),+, ∗) is a ring (Thm 5.2.3), A is linear. (by the distributivity of convolution
over addition)
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Let n = |G|, χ ∈ Ĝ.

By Thm 5.3.8,

â ∗ χ = â · χ̂
= â · nδχ [χ̂ = |G|δχ by ex. 5.3.5]

So ∀ θ ∈ Ĝ,

(â · nδχ)(θ) =

{
â(θ)n, χ = θ

0, else

= â(χ)nδχ

By inverse of Fourier transform, then

a ∗ χ =
1

|G|
∑
θ∈Ĝ

â ∗ χ(θ)θ (Fourier inverse – Thm 5.3.6)

=
1

|G|
∑
θ

â(χ)nδχ(θ)θ (by above computations)

=
1

n
â(χ)nχ (by δχ)

= â(χ)χ

That is,

Aχ = â(χ)χ

So χ is an eigenvector with eigenvalue â(χ).

As elements of Ĝ form an orthonormal basis of eigenvectors for A, then A is diagonal-
izable.

- By 4.4.7, irreducible characters form orthonormal basis of Z(L(G)), so form a basis
for space A is acting on (as G is abelian Z(L(G)) = L(G).)

This lemma gives us a key step in computing the spectrum of a Cayley graph of an
abelian group. It remains to express the adjacency matrix as the matrix of a convolution
operator, so that we can apply this lemma directly.
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Thm (5.4.10): G = {g1, g2, . . . , gn} abelian group, S ⊆ G symmetric.

χ1, χ2, . . . , χn irred characters of G.

A the adjacency matrix of the Cayley graph of G wrt S (using above ordering for
vertices).

Then:

(1) The eigenvalues of A are the numbers

λi =
∑
s∈S

χi(s) ∀ 1 ≤ i ≤ n

(2) The corresponding orthonormal basis of eigenvectors is given by vi where

vi =
1√
|G|


χi(g1)
χi(g2)

...
χi(gn)


Pf:

Define δS : G→ C by

δS : =
∑
s∈S

δs so that

δS(x) =

{
1, x ∈ S
0, else

Define F : L(G)→ L(G) by

F (b) := δS ∗ b

That is, F is the convolution operator wrt δS.

By 5.4.9, irred characters χi are eigenvectors of F wrt eigenvalue δ̂S(χi), so

λi = δ̂S(χi) = |G|〈δS, χi〉 by def of Fourier transform

=
|G|
|G|

∑
x∈S

δS(x)χi(x)

=
∑
s∈S

χi(s) by def of δS

=
∑
s∈S

χi(s
−1) since χi(g

−1) = χi(g) (prop 9.1.5)
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=
∑
s∈S

χi(s) as S is symmetric

Let B be the basis of L(G) given by B = {δg1 , δg2 , . . . , δgn}.
For i = 1, . . . , n, [F ]B has eigenvalues λi with eigenvectors vi.

- As λi are orthonormal, then vi are orthonormal.

- The scaling by 1√
|G|

comes from the fact that the δgi are othonormal wrt the inner

product (f1, f2) = |G|〈f1, f2〉.

Remains to show that the adjacency matrix A = [F ]B.

Let δgj ∈ B.

F (δgj) =
∑
s∈S

δs ∗ δgj by def and δS

=
∑
s∈S

δsgj by prop 5.2.2, δs ∗ δgj = δsgj

The ij-entry of [F ]B is the coefficient of δgi in F (δgj) =
∑

s∈S δsgj . Thus,

([F ]B)ij =

{
1, gi = sgj for some s ∈ S
0, else

=

{
1, gig

−1
j ∈ S

0, else

= Aij for all i, j.

Note that by the spectral theorem, λi ∈ R for all i.

A direct result of this theorem is applying it to a Cayley graph of a cyclic group.

Cor (5.4.11): Let A be the adjacency matrix of the Cayley graph of Z/nZ wrt the
symmetric set S. The eigenvalues of A are

λk =
∑
[m]∈S

e
2πikm
n k = 0, 1, . . . , n− 1

The corresponding eigenvectors are given by Lemma 5.4.9.

Pf: A straight application of 5.4.10. �
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Ex (5.4.12):

Let A be the adjacency matrix of the graph in Ex 5.4.6:

G = Z/6Z, S = {±[1],±[2]}.
For k = 0, . . . , 5, the eigenvalues of A are

λk =
∑
[m]∈S

e
2πikm

6

= e
πik
3 + e

−πik
3 + e

2πik
3 + e

−2πik
3

= 2 cos

(
πk

3

)
+ 2 cos

(
2πk

3

)

Remark: This approach can be generalized to non-abelian groups, with the assumption
that S is closed under conjugation.

In particular, each character χ induces eigenvalue(s) for A as follows.

Prop: G finite, S ⊆ G symmetric and invariant under conjugation. Then, for each

χi ∈ Ĝ, the adjacency matrix of Cay(G,S) has eigenvalue

λi =
1

χi(e)

∑
s∈S

χi(s)

with multiplicity χi(e)
2 = d2i .
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