Reedy categories and diagrams

Motivation:

Gode: To introduce the notevant terminology and ideas to understand the proof of the model category structure on Reedy diagrams.

§1. Preliminaries

Deff C a swall category.
C is a REEDY CATEGORY if it has two wide subcategorios
$$\vec{C}$$
 and \vec{C} where each
object is assigned a "DEGREE" n >0 such that the following is satisfied:
(1) Every non-identity morphism of \vec{C} raises degree.
(2) Every non-identity morphism of \vec{C} lowers degree.
(3) Every morphism g of C has a unique factorization
 $g = \vec{g} \cdot \vec{g}$ $\vec{g} \in \vec{C}$, $\vec{g} \in \vec{C}$

Remark

· More general definition: clegree function takes ORDINAL values

Some basic properties:
• C Ready
$$\Rightarrow$$
 C°P is Ready with $\vec{C}^{\bullet P} := (\vec{C})^{\circ P}$ and
 $\vec{c}^{\circ P} := (\vec{C})^{\circ P}$
• C, D Ready \Rightarrow C × D is Ready with $\vec{C} \times \vec{D} := \vec{C} \times \vec{D}$
 $\vec{c} \times \vec{D} := \vec{C} \times \vec{D}$

01.04.2021

Sources:

• "Model categories and their localizations" [Hinschornn]

"A primer ou homotopy colimits" [Dugger] Example. The cosimplicial and simplicial indexing categories.

Def.
$$n \in \mathbb{Z}_{>0}$$

 $[n] := \{0, 1, .., n\}$
 $cat \Lambda := \begin{cases} objects: \{[n] \mid n \neq 0\} \\ morphisms : \Lambda([n], [k]) := \{ s: [n] \rightarrow [k] \mid s(i) \leq s(j) \forall 0 \leq i \leq j \leq n\} \end{cases}$
 $\circ \Lambda$ is called the COSIMPLICIAL INDEXING CATEGORY
 $\circ \Lambda^{\circ P}$ is called the SIMPLICIAL INDEXING CATEGORY

·
$$\mathcal{M}$$
 a codigory
 \longrightarrow Finder $\Delta^{oP} \rightarrow \mathcal{M}$: A SIMPLICAL OBJECT IN M
 \longrightarrow Finder $\Delta \rightarrow M$: A COSIMPLICIAL OBJECT in M

Notation:

with
$$deg([n]) := n$$

 $\overline{\Delta}^{op} := \{ ops of surjective maps \}$
 $\overline{\Delta}^{op} := \{ ops of injective maps \}$

§ 2. Filtrations

Perf. C is Ready

$$n \in \mathbb{Z}_{>0}$$

 $Tue n-FILTRATION = f^{*C}$ is the full subcategory of C with all objects
 $x \in C$ s.t. $deg(x) \leq n$
 eg 0-filtration of $C = \begin{cases} obj : x \leq s.t. \ deg(x) = 0 \\ mor : \{l \leq l \ dlg(x) = 0\} \end{cases}$ keedy factorzation
Proposition C Ready. $n \in \mathbb{Z}_{>0}$.
 $\Rightarrow F^{*}C$ is Ready with:
 $\cdot F^{*}C := C \cap (F^{*}C)$
 $\cdot F^{*}C := C \cap (F^{*}C)$
 $and C = \bigcup_{n \geq 0} F^{*}C$ where $F^{*}C \subset F^{*}C \subset F^{*}C$

§ 3. Diagrams

<u>Recall</u>: The O-filtration of a Reedy category has no non-identity maps. \longrightarrow define a diagram $X: F^{\circ}C \rightarrow M$ by choosing an object $X_{\alpha} \in M$ for each object $X \in C$ with deg X=O.

Suppose we have $X: F^{n-1}C \to M$ want to extend it to a diagram $X: F^{n}C \to M$

$\frac{\text{Define } X: F^{*}C \rightarrow M \text{ by}}{\text{Define } X: F^{*}C \rightarrow M \text{ by}}$ $for each \alpha \in C \text{ with } \deg \alpha = n, \text{ choose } X_{\alpha} \in M.$

•

$$\begin{array}{c} \textcircled{\blacksquare} & \underbrace{\mathsf{Morphisms}}_{\mathsf{For each}} & \mathsf{p} \in \mathsf{F}^{\mathsf{n-1}} C, \text{ and } & \underbrace{\mathsf{p} \to \infty}_{\mathsf{p}} \text{ in } \mathsf{F}^{\mathsf{n}} C, \\ (\texttt{*}) \text{ Want a map} & X_{\mathsf{p}} \longrightarrow X_{\mathsf{x}} \quad \mathsf{s.t.} \quad \mathsf{if} \quad \mathsf{p} \to \mathsf{p}^{\mathsf{r}} \in \mathsf{F}^{\mathsf{n-1}} C \quad \mathsf{and} \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

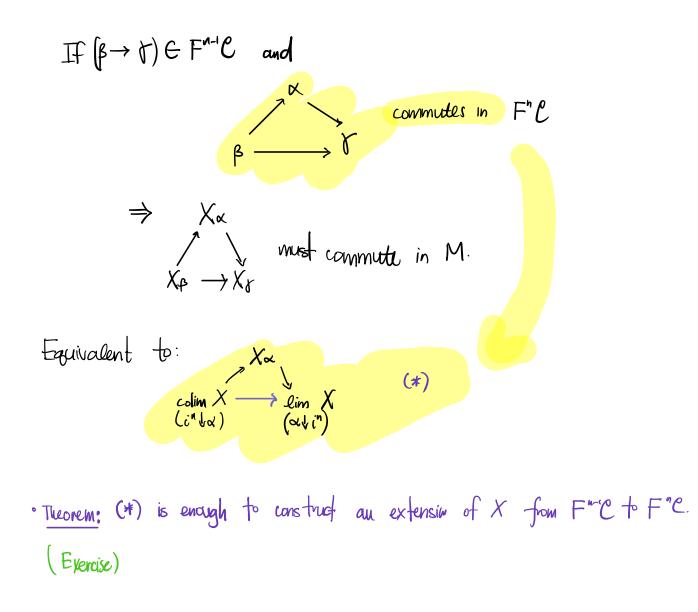
•

Let
$$i^n, F^{n+1} C \rightarrow F^n C$$
 be the inclusion function
Then, (*) is equivalent to choosing a map
 $\lim_{t \to \infty} \chi(GX) = \operatorname{colim}_{t^n} f(X)$

Dually, fr each
$$f \in F^{n-1}C$$
 and $X_{t} \rightarrow f$ in $F^{n}C$,
We used a map $X_{t} \rightarrow X_{f}$ such that
If $\left(\begin{array}{c} X_{t} \\ Y_{t} \end{array}\right)$ commutes in $F^{n}C$, then
 $f \rightarrow f'$ commutes in M .
 $X_{t} \rightarrow X_{t}$,
 $X_{t} \rightarrow X_{t}$,

This is equivalent to choosing a map
$$X_{\alpha} \longrightarrow \lim_{(\alpha \downarrow i^{n})} X(\alpha)$$

Key: The colimit and limit chosen above one independent of our choice of degree function on the Reedy category C. But, we need some conditions on the choices for these maps.



C a Reedy category,
$$X \in C$$
 an object.
M a model category, $X : C \rightarrow M$
Def: LATCHING CATEGORY OF C at α , denoted $\partial(\overline{C} \mid \alpha)$, is the full subcategory
ef $(\overline{C} \mid \alpha)$ containing all the objects except 1_{α} .
• MATCHING CATEGORY OF C at α , denoted $\partial(\alpha \mid \overline{C})$ is the full subcategory
ef $(\alpha \mid \overline{C})$ containing all the objects except 1_{α} .

Facts: (1)
$$(\partial(\vec{c} \downarrow \alpha))^{\circ P} \cong \partial(\alpha \downarrow \vec{c}^{\circ})$$

(2) $(\partial(\alpha \downarrow \vec{c}))^{\circ P} \cong \partial(\vec{c}^{\overrightarrow{o}} \downarrow \alpha)$
Def. LATCHING OBJECT OF X at α : $L_{\alpha} X := \operatorname{colim}_{\partial(\vec{c} \downarrow \alpha)} X = \operatorname{Lon}_{i} X(\alpha)$
LATCHING MAP OF X at α : $L_{\alpha} X \to X$

• MATCHING OBJECT OF X at
$$\alpha$$
: $M_{\alpha}X := \lim_{\partial (\alpha \downarrow \hat{c})} X = Ran_{i} X(\alpha)$
• MATCHING MAP of X at α : $\chi_{\alpha} \rightarrow M_{\alpha}X$

.

objects used to analyze maps between Reedy diagrams: colim X and lim X ∂(FⁿCld) ∂(~lFⁿC) Key fact: All colim are latching objects of X All lim are matching objects of X. if x ∈ C has degree n, iⁿ: Fⁿ¹C → FⁿC the inclusion functor. M₂X = (1) The LATCHING CATEGORY ∂(²/₂) is a <u>night cofinal subcat</u> of both (iⁿ ld) and ∂(K + FⁿC) (2) The MATCHING CATEGORY ∂(x + Č) is a <u>right cofinal subcat</u> of both (x + iⁿ) and ∂(x + FⁿC)

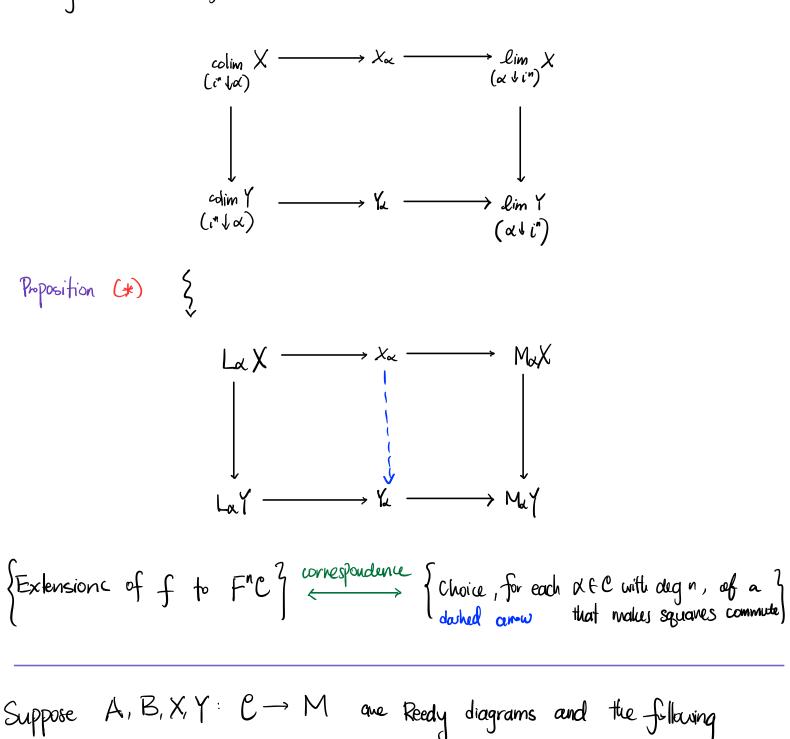
Summary: What do we have?

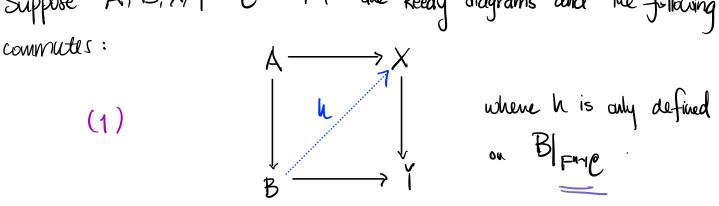
<u>§ 5. Maps between Reedy diagrams</u>

Same situation as above:
$$C, M, X \in C, degx = n$$

 $\cdot X, Y: C \rightarrow M$ diagrams
Goal: Define $X \neq Y$ inductively on filtrations.
Recall: F°C contains no non-identity maps.
 $\sim f: X|_{F^{o}C} \Rightarrow Y|_{F^{o}C}$ is completely determined by choosing a map $X_{x} \rightarrow Y_{x}$ for every
object $x \in C$ with degree O .

For every $\alpha \in \mathbb{C}$ with $\deg \alpha = n$, we have:





Then, for every
$$\alpha \in C$$
 with deg n, we have an induced diagram:

$$A_{x} \coprod L_{x}B \longrightarrow X_{x}$$
(2)
$$A_{x} \coprod L_{x}B \longrightarrow X_{x}$$

$$B_{x} \longrightarrow Y_{x} \xrightarrow{T} M_{x}X$$

$$M_{x} \longrightarrow M_{x} \xrightarrow{T} M_{x}X$$

$$\begin{cases} h \text{ can be extended to } F^{*}C \text{ so that } (1) \text{ commutes} \end{cases}$$

$$\begin{cases} \text{for every } \alpha \in C \text{ of deg } n, \text{ there is a wap } B_{x} \xrightarrow{T} X_{x} \text{ so that} \end{cases}$$

$$(2) \text{ commutes}$$

• Have the ability to define the Reedy model structure. => statement and proof next week featuring Sayantian!