
Haskell and the power of functional
programming

Mohabat Tarkeshian

MATH 9171L: MATHEMATICAL COMPUTATION

June 24, 2021

Overview

1. A little history

2. Applications in the “real” world

3. Why functional programming?

4. The basics

5. Lazy evaluation

6. Examples and demoing Haskell

A little history

. First Haskell Language Report: 1990

. Stable release: 2010

. Widely used in teaching, research, and industry
I Annual research conference: ACM Haskell Symposium

. A statically typed functional programming language

. Lazy evaluation and typeclasses

Motivation: The “real”-world
. Game position optimization

. Document conversion (Pandoc)

. Extracting LaTeX code from a handdrawn symbol (Detexify)

. Extracting music chords (Chordify)

. Internal IT infrastructure (Google)

. Multicore parallelism (Intel)

. Secure contract signatures (Scrive)

. Blockchain and cryptocurrency (Cardano & Ada)

. Supply chain optimization (Target)

. Copilot project (NASA & Galois Inc.)

. Mobile electronic health records (Factis research)

. Building declarative animations (Reanimate)

A fun fact: Haskell is written in Haskell!

Functional vs imperative programming

Imperative programming

. Define a sequence of
executable tasks

. Variables can change their
state while executing
functions

. Control flow structures for
repeating some action
several times

. Sequential thinking

Functional programming

. Define what things are -
everything is encoded as a
function

. Variables are static

. Functions do not have
’side-effects’
I But.. we can interact
with the real-world
using an I/O action

. Glue any number of
functions and programs
together: modular thinking

The basics

How are functions defined?
1. Indicate the input and output types (not strictly necessary)

2. Function name

3. A space

4. Input parameters
5. Output

I Might include pattern matching

double :: Int -> Int
double n = 2 * n

factorial :: (Integral a) => a -> a
factorial 0 = 1
factorial n = n * factorial (n-1)

List comprehension and infinite lists:
The way you want it to be

. Encode sets as we would mathematically

list1 :: [Int]
list1 = [2*x | x <- [1..10] , 2*x >= 12]

removeLowercase :: String -> String
removeLowercase st = [c | c <- st, c ‘elem ‘ [’A’..’Z

’]]

. Can define infinite lists

[1, 2..]
[2, 4..]

But how does this work?

Lazy evaluation

. Unless something is necessary, it is not evaluated
I Will not compute every element of an infinite list to invoke a
function that only requires a finite subset

. Avoids infinite recursion

. Efficiency - it’s complicated

. Thinking mathematically in “thunks”

Examples using Emacs and ghc

. "Invalid" computations

. Infinite structures:
I N
I Primes
I The Fibonacci numbers
I Cycles

. A tree as a functor

References

Andrej Bauer
Mathematics and computation: A blog about mathematics
for computers
Hask is not a category

Haskell in industry
Haskell Wiki

John Hughes
Why functional programming matters
1990
Research Topics in Functional Programming

Miran Lipovača
Learn you a Haskell for great good
2011

http://math.andrej.com/2016/08/06/hask-is-not-a-category/
https://wiki.haskell.org/Haskell_in_industry
http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://learnyouahaskell.com

