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Recall definitions from II.1:

Definition 0.1. A K vector space V is an inner product space if there exists a map (“the inner
product”) 〈·, ·〉 : V × V → K that satisfies the following conditions for all x, y, z ∈ V, α ∈ K

(1) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0

(2) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

(3) 〈αx, y〉 = α〈x, y〉

(4) 〈x, y〉 = 〈y, x〉.

– x, y ∈ V are orthogonal if 〈x, y〉 = 0.

– {xi}i∈I ∈ V collection of vectors in V is called an orthonormal set iff

〈xi, xj〉 =

{
1 if i = j

0 if i 6= j

Theorem 1. Every inner product space V is a normed linear space with the norm

‖x‖ =
√
〈x, x〉

Definition 0.2. A Hilbert Space is a complete inner product space.
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1. Hilbert Spaces: Orthonormal Bases

– Want to develop idea of orthonormal set further ⇒ To extend the finite-dimensional
“basis” to complete inner product spaces.

Definition 1.1. Let H be a Hilbert space.

Orthonormal Basis for H / Complete Orthonormal System for H:

An orthonormal set S ⊆ H such that if S ( U for some U ⊆ H, then U is not an orthonormal
set.

– i.e., No other orthonormal set contains S as a proper subset.

Theorem II.5

Every Hilbert space H has an orthonormal basis.

Proof. (Standard application of Zorn’s Lemma)

Let C be the collection of all orthonormal sets in H.

Define the regular partial ordering on C (set inclusion), i.e., S1 < S2 if S1 ⊂ S2.

C is non-empty since for any v ∈ V ,

{
v

‖v‖

}
is an orthonormal set ⇒ C 6= ∅.

Let {Sα}α∈A be any linearly ordered subset of C (i.e., any totally ordered subset of C).

Then,

S = ∪
α∈A

Sα is an orthonormal set and

Sα < S ∀α ∈ A (as Sα ⊂ S by definition of union)

Why is S orthonormal?

p Suppose x, y ∈ S, x 6= y. Clearly 〈x, x〉 = 1 = 〈y, y〉 as both x, y are elements of an
orthonormal set in V . Then, x ∈ Si and y ∈ Sj for some i, j ∈ A. As {Sα}α∈A is totally
ordered, then either Si ⊂ Sj or Sj ⊂ Si.

WLOG, Si ⊂ Sj, then x, y ∈ Sj and hence since Sj is an orthonormal set, then 〈x, y〉 = 0.
As x, y ∈ S were arbitrary, then it follows that S is an orthonormal set. y

Now, S is orthonormal (S ∈ C) and Sα < S for all α ∈ A. By definition, then S is an upper
bound of the totally ordered subset {Sα}α∈A.

As {Sα}α∈A was an arbitrary totally ordered subset of C, then every totally ordered subset
has an upper bound.
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By Zorn’s Lemma, it follows that C has a maximal element. That is, there exists some
B ∈ C such that if B ⊂ S for an orthonormal set S ⊆ V , then B = S. Hence, B is an
orthonormal set that is not properly contained in any other orthonormal set. By definition,
B is an orthonormal basis for H.

⇒ Every Hilbert space has an orthonormal basis. �

BUT... Orthonormal Basis 6= Vector Space Basis

Counterexample: For each n ∈ N, let en ∈ `2 be the sequence (en,k)k≥1 where

en,n = 1 and en,k = 0 if n 6= k

So E = {en | n ∈ N} is an orthonormal basis of `2 (since 〈x, ej〉 = xj for all j), but NOT
a vector space basis since the sequence

(
1
n

)
n≥1 ∈ `

2 is NOT a finite linear combination of

elements of E . i.e.,

linE 6= `2

Analogous to finite-dimensional vector spaces, elements of a Hilbert space can be expressed
as a “linear combination” of basis elements by the following theorem.

Theorem II.6

Let H be a Hilbert space and S = {xα}α∈A an orthonormal basis. Then, for each y ∈ H,

y =
∑
α∈A

〈y, xα〉xα (1)

and
‖y‖2 =

∑
α∈A

|〈y, xα〉|2 (2)

The equality in (1) means that the sum on the right-hand side converges to y in H independent
of order.

Conversely, if
∑

α∈A |cα|2 <∞, cα ∈ K, then
∑

α∈A cαxα converges to an element of H.

Proof.

To show (1): y =
∑

α∈A〈y, xα〉xα, let y ∈ H be arbitrary.

By Bessel’s Inequality (Section II.1), for any finite subset A′ ⊆ A,∑
α∈A′

|〈y, xα〉|2 ≤ ‖y‖2
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Thus, 〈y, xα〉 6= 0 for only a countable number of α’s in A.

Why is E = {α ∈ A | 〈y, xα〉 6= 0} countable?

p For each n ∈ N, define

En =

{
α ∈ A

|〈y, xα〉| > 1

n

}
Suppose En is infinite.

Then, there exists a countably infinite subset {αm}m∈N ⊂ En such that αm 6= αk whenever
k 6= m. Hence, by Bessel’s inequality,

‖y‖2 ≥
m∑
i=1

|〈y, xαi
〉|2

Taking the limit as m→∞,

‖y‖2 ≥
∑
m∈N

|〈y, xαm〉|2 ≥
∑
m∈N

1

n2

As the latter sum diverges, this implies ‖y‖ =∞ (contradiction!). Hence, each En is finite.

Now,

E = {α ∈ A | 〈y, xα〉 6= 0} =
⋃
n∈N

En

is a countable union of finite sets ⇒ E is countable.

Order these indices by α1, α2, . . . and so on.

Now,
∑n

j=1

∣∣〈y, xαj
〉
∣∣2 ≤ ‖y‖2 is monotone increasing (as it is summing positive terms) and

bounded (by ‖y‖2), hence it converges as n→∞.

Since ∑
α∈A

‖〈y, xα〉xα‖ =
∑
α∈A

|〈y, xα〉| <∞

then this sum absolutely converges. AsH is a Banach space, then it follows that
∑

α∈A〈y, xα〉xα ∈
H converges in H.

For n ∈ N, let yn =
∑n

j=1〈y, xαj
〉xαj

.

Then, for n > m,

‖yn − ym‖2 =

∥∥∥∥∥
n∑

j=m+1

〈y, xαj
〉xαj

∥∥∥∥∥
2

‖yn − ym‖2 =
n∑

j=m+1

∣∣〈y, xαj
〉
∣∣2
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Why?

p By definition of the norm on H,∥∥∥∥∥
n∑

j=m+1

〈y, xαj
〉xαj

∥∥∥∥∥
2

=

(
n∑

j=m+1

〈y, xαj
〉xαj

,

n∑
j=m+1

〈y, xαj
〉xαj

)
By linearity of the inner product on H in the first coordinate and conjugate linearity in the
second coordinate, then(

n∑
j=m+1

〈y, xαj
, y〉xαj

,

n∑
j=m+1

〈y, xαj
〉xαj

)
=

n∑
j=m+1

n∑
j=m+1

〈y, xαj
〉 · 〈y, xαj

〉 · 〈xαj
, xαj
〉

As S = {xα}α∈A is an orthonormal set, 〈xαj
, xαj
〉 = 1 and hence(

n∑
j=m+1

〈y, xαj
〉xαj

,
n∑

j=m+1

〈y, xαj
〉xαj

)
=

n∑
j=m+1

〈y, xαj
〉 · 〈y, xαj

〉

⇒ ‖yn − ym‖2 =
n∑

j=m+1

∣∣〈y, xαj
〉
∣∣2

Thus the statement holds y

Since
∑n

j=1

∣∣〈y, xαj
〉
∣∣2 converges as n→∞, then

‖yn − ym‖2 =
n∑

j=m+1

∣∣〈y, xαj
〉
∣∣2 ⇒ (yn)n≥1 ∈ H is Cauchy

Why?

p Let ε > 0 be arbitrary.

‖yn − ym‖2 =
n∑

j=m+1

∣∣〈y, xαj
〉
∣∣2

Let L = limn→∞
∑n

j=1

∣∣〈y, xαj
〉
∣∣2.

Let ε′ = ε2 − |L|. Then, there exists some N ∈ N such that for all n ≥ N ,∣∣∣∣∣
n∑
j=1

∣∣〈y, xαj
〉
∣∣2 − L∣∣∣∣∣ < ε′

Since ‖yn − ym‖2 =
∑n

j=m+1

∣∣〈y, xαj
〉
∣∣2, and by the reverse triangle inequality, then

⇒
∣∣‖yn − ym‖2 − |L|∣∣ < ε′

⇒ ‖yn − ym‖2 < ε′ + |L|
‖yn − ym‖ <

√
ε′ + |L|

⇒ ‖yn − ym‖ < ε for all n,m ≥ N

Thus, (yn)n≥1 ∈ H is Cauchy y.
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H is complete ⇒ ∃ some y′ ∈ H such that

(yn)n≥1
n→∞−→ y′ ∈ H

⇒ y′ = lim
n→∞

n∑
j=1

〈y, xαj
〉xαj

Consider 〈y− y′, xαt〉 for some t ∈ A (i.e., xαt ∈ S). Since limn→∞ yn = y′, by the continuity
of the inner product then

〈y − y′, xαt〉 = lim
n→∞
〈y − yn, xαt〉

〈y − y′, xαt〉 = lim
n→∞

〈
y −

n∑
j=1

〈y, xαj
〉xαj

, xαt

〉
By linearity of the inner product in the first coordinate, then

〈y − y′, xαt〉 = lim
n→∞

〈y, xαt〉 −

〈
n∑
j=1

〈y, xαj
〉xαj

, xαt

〉

〈y − y′, xαt〉 = lim
n→∞

〈y, xαt〉 −
n∑
j=1

〈y, xαj
〉
〈
xαj

, xαt

〉
Now, since xαj

, xαt ∈ S belong to an orthonormal set, then 〈xαj
, xαt〉 = δjt = 1 only when

j = t. Hence, the only element of the sum that remains occurs when j = t.

⇒ 〈y − y′, xαt〉 = 〈y, xαt〉 − 〈y, xαt〉 〈xαt , xαt〉

As 〈xαt , xαt〉 = 1, then

〈y − y′, xαt〉 = 〈y, xαt〉 − 〈y, xαt〉

⇒ 〈y − y′, xαt〉 = 0

As xαt ∈ S was arbitrary, 〈y − y′, xα〉 = 0 for all xα ∈ S.

Since S is an orthonormal basis, it is not contained in any larger orthonormal set, and hence
it follows that y − y′ = 0, y = y′.

y = lim
n→∞

n∑
j=1

〈y, xαj
〉xαj

=
∑
α∈A

〈y, xα〉xα ⇒ (1) holds

6



To show (2) holds: Let y ∈ H be arbitary as before.

Recall that since
∑N

j=1

∣∣〈y, xαj
〉
∣∣2 ≤ ‖y‖2 is monotone increasing (as it is summing positive

terms) and bounded (by ‖y‖2), it converges as N →∞, That is,∑
α∈A

|〈y, xα〉|2 <∞

Remains to show that ‖y‖2 =
∑

α∈A |〈y, xα〉|
2.

By (1),

y = lim
n→∞

n∑
j=1

〈y, xαj
〉xαj

By continuity of the inner product, then

‖y‖2 = lim
n→∞

∥∥∥∥∥
n∑
j=1

〈y, xαj
〉xαj

∥∥∥∥∥
By the definition of ‖ · ‖ on H,

‖y‖2 = lim
n→∞

(
n∑
j=1

〈y, xαj
〉xαj

,
n∑
j=1

〈y, xαj
〉xαj

)
By linearity (in 1st coordinate) and conjugate linearity (in 2nd coordinate) of the inner
product,

‖y‖2 = lim
n→∞

n∑
j=1

〈y, xαj
〉
n∑
j=1

〈y, xαj
〉
〈
xαj

, xαj

〉
‖y‖2 = lim

n→∞

n∑
j=1

∣∣〈y, xαj
〉
∣∣2 〈xαj

, xαj

〉
As
〈
xαj

, xαj

〉
= 1,

‖y‖2 = lim
n→∞

n∑
j=1

∣∣〈y, xαj
〉
∣∣2 as required.

Lastly, the converse statement: If
∑

α∈A |cα|2 <∞, cα ∈ K, then
∑

α∈A cαxα converges to
an element of H.

Suppose for some cα ∈ K,

∑
α∈A

|cα|2 <∞
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Consider the series
∑

α∈A cαxα.

∑
α∈A

|cαxα| ≤
∑
α∈A

|cα| ‖xα‖∑
α∈A

|cαxα| ≤
∑
α∈A

|cα| ≤
∑
α∈A

|cα|2 <∞

Thus,
∑

α∈A cαxα is absolutely convergent and since cαxα ∈ H, as H is complete then∑
α∈A cαxα converges in H. �

Remark 1.2. Parseval’s Relation: (2) in the above theorem:

‖y‖2 =
∑
α∈A

|〈y, xα〉|2

– Coefficients 〈y, xα〉 called The Fourier Coefficients of y with respect to the basis
{xα}α∈A.

8



Recall: Gram-Schmidt Orthogonalization

– To construct an orthonormal set from an arbitrary sequence of independent vectors.

Suppose {u1, u2, . . . } is an arbitrary set of independent vectors in an inner product space V .
Construct an orthonormal set {v1, v2, . . . } such that for each m, {uj}mj=1 and {vj}mj=1 span
the same vector space.

– i.e., the set of all finite linear combinations of the vi’s is the same as the set of all
finite linear combinations of the ui’s.

Recall the procedure:

w1 = u1 −→ v1 =
w1

‖w1‖
w2 = u2 − 〈v1, u1〉v1 −→ v2 =

w2

‖w2‖
...

wn = un −
n−1∑
k=1

〈vk, un〉vk −→ vn =
wn
‖wn‖

...

and so on.

Recall:

Definition 1.3. A separable Hilbert space is a Hilbert space with a countable dense subset,
i.e., there exists some countable A ⊂ H such that A = H.

– Most Hilbert spaces are separable

– Following theorem characterizes separable Hilbert spaces up to isomorphism.
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Theorem II.7

A Hilbert space H is separable if and only if it has a countable orthonormal basis S.

• If there are N <∞ elements in S, then H ∼= KN .

• If there are countably many elements in S, then H ∼= `2.

Proof.

p Before we start the proof, recall the following Lemma from Section I of the lectures (Normed
Spaces):

Lemma: A normed space X is separable if and only if there exists a countable A ⊂ X such
that X = linA. y

=⇒ Suppose H is separable.

Let A = {an}n∈N be a countable dense subset of H (A = H) and hence linA = H.

We can obtain a countable subcollection V ⊆ A such that V = {vi}i∈N consists of only
linearly independent vectors (i.e., discard the dependent vectors), such that the set of all
finite linear combinations is the same as that of A.

linV = linA

Since linA = H,

⇒ linV = H

Hence, V is a subset of linearly independent vectors such that linV = linA = H.

V ⊂ H is linearly independent, so by applying Gram-Schmidt, we obtain an orthonormal
set S in H such that S is countable (as V is countable) and

linV = linS = H

To show that S is an orthonormal basis, let x ∈ H be such that

〈x, sn〉 = 0

for all n ∈ N. (It must be shown that x = 0, because otherwise, S ∪ {x} would be an
orthonormal set that properly contains S).

Let S = {sn}n∈N.

As linS ⊂ H is dense, let {wk}k∈N ⊂ linS be such that

lim
k→∞

wk = x
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Since 〈x, sn〉 = 0 for all elements sn of S, and since wk ∈ linS, then by the linearity and
continuity of the inner product, the following holds.

〈x, x〉 = lim
k→∞
〈x,wk〉 = 0

〈x, x〉 = 0 ⇒ x = 0 by property (1) of inner product

Hence, if x ∈ H such that 〈x, sn〉 = 0 for all n ∈ N, then x = 0 ⇒ S is an orthonormal
basis of H.

So H has a countable orthonormal basis.

⇐ On the other hand, suppose S = {sn}n∈N is a countable orthonormal basis of H.

By the previous theorem (II.6), for any y ∈ H,

y =
∑
i∈N

〈y, si〉si

i.e., y = lim
n→∞

n∑
i=1

〈y, si〉si

That is, y ∈ linS (a limit of elements of linS). As this holds for any y ∈ H,

linS = H

By the lemma: As S is countable and linS = H, then H is separable.

• If S has countably many elements:

Suppose H is separable and S = {sn}n∈N is an orthonormal basis.

Define the map U : H → `2 by

U : x 7→ {〈x, sn〉}n∈N
– U is well-defined and linear:

By Theorem II.6 (previous theorem) for x ∈ H,

x =
∞∑
n=1

〈x, sn〉sn ∈ H such that

‖x‖2 =
∞∑
n=1

|〈x, sn〉|2

By the definition of norm, ‖x‖2 <∞ and hence
∞∑
n=1

|〈x, sn〉|2 <∞
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That is, for every x ∈ H, U(x) ∈ `2. So U is well-defined.

Also, if x, y ∈ H, α ∈ K,

U(αx+ y) = {〈αx+ y, sn〉}n∈N
U(αx+ y) = {〈αx, sn〉+ 〈y, sn〉}n∈N
U(αx+ y) = {α〈x, sn〉+ 〈y, sn〉}n∈N
⇒ U(αx+ y) = αU(x) + U(y)

Thus, U is linear.

– U is onto:

Let (cj)j∈N ∈ `2 be arbitrary. Then,

∞∑
j=1

|cj|2 <∞

By the second part of theorem II.6 (the converse statement), then
∑∞

n=1 cjsj converges to
an element of H. Thus, letting x =

∑∞
j=1 cjsj ∈ H,

U(x) =

{〈
∞∑
j=1

cjsj, sn

〉}
n∈N

By linearity (in 1st coordinate) of the inner product, then

U(x) =

{
∞∑
j=1

cj〈sj, sn〉

}
n∈N

Since 〈sj, sn〉 = 1 iff j = n (0 otherwise),

U(x) = {cn}n∈N
⇒ U(x) = (cj)j∈N

So U is onto.

– U is isometric:

Let x ∈ H be arbitrary.

It must be shown that ‖x‖ = ‖Ux‖.

By definition,

‖Ux‖2 = 〈Ux,Ux〉 = 〈〈x, sn〉n∈N, 〈x, sn〉n∈N)
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Using the inner product on `2,

〈Ux,Ux〉 =
∑
n∈N

〈x, sn〉〈x, sn〉

〈Ux,Ux〉 =
∑
n∈N

|〈x, sn〉|2

⇒ 〈Ux,Ux〉 = ‖x‖2 by Theorem II.6

‖Ux‖2 = ‖x‖2

Therefore, as x ∈ H was arbitrary and ‖Ux‖ = ‖x‖, U is isometric.

As U is well-defined, surjective, and isometric, then U is an isomorphism of Hilbert spaces.

⇒ H ∼= `2
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• If S has N elements: This is identical to the preceding argument for a countably infinite
orthonormal basis S (replacing the inner product on `2 with the inner product on KN).

Suppose H is separable and S = {sn}Nn=1 is an orthonormal basis.

Define the map U : H → KN by

U : x 7→ {〈x, sn〉}Nn=1

– U is well-defined and linear:

U is linear as in the previous case.

U is well-defined since for x ∈ H:

‖x‖2 =
N∑
n=1

|〈x, sn〉|2 <∞

Hence, U(x) ∈ KN .

– U is onto:

Let c = (c1, c2, . . . , cN) ∈ KN be arbitrary. Then,

N∑
j=1

|cj|2 <∞

By the second part of theorem II.6 (the converse statement), then
∑N

j=1 cjsj converges to an

element of H. Thus, letting x =
∑N

j=1 cjsj ∈ H,

U(x) =

{〈
N∑
j=1

cjsj, sn

〉}N

n=1

By linearity (in 1st coordinate) of the inner product, then

U(x) =

{
N∑
j=1

cj〈sj, sn〉

}N

n=1

U(x) = {cn}Nn=1

U(x) = (c1, c2, . . . , cN) = c

So U is onto.

– U is isometric:

Let x ∈ H be arbitrary.

It must be shown that ‖x‖ = ‖Ux‖.
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By definition,

‖Ux‖2 = 〈Ux,Ux〉 = 〈〈x, sn〉Nn=1, 〈x, sn〉Nn=1〉

Using the standard inner product on KN ,

〈Ux,Ux〉 =
N∑
n=1

〈x, sn〉〈x, sn〉

〈Ux,Ux〉 =
N∑
n=1

|〈x, sn〉|2

⇒ 〈Ux,Ux〉 = ‖x‖2 by Theorem II.6

‖Ux‖2 = ‖x‖2

Therefore, as x ∈ H was arbitrary and ‖Ux‖ = ‖x‖, U is isometric.

As U is well-defined, surjective, and isometric, then U is an isomorphism of Hilbert spaces.

⇒ H ∼= KN

�

Remark 1.4. Preceding theorem shows that in the separable case, the Gram-Schmdit process
allows us to construct an orthonormal basis without using Zorn’s Lemma.

How did Hilbert spaces naturally arise from problems in classical analysis?

If f(x) is an integrable function on [0, 2π], define cn as

cn =
1

(2π)
1
2

∫ 2π

0

e−inxf(x)dx

Definition 1.5. The formal series
∑∞

n=−∞ cn(2π)−
1
2 einx is called the Fourier series of f .

Classical Problem: For which f and in what sense does the Fourier series of f
converge to f?

Theorem II.8

Suppose that f(x) is periodic of period 2π and is continuously differentiable. Then the func-

tions
∑M

n=−M cne
inx converge uniformly to f(x) as M →∞.

– Gives sufficient conditions for Fourier series of a function to converge uniformly.

• But what about finding the exact class of functions whose Fourier series converge unfiromly
or converge pointwise?
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– Can get a nice answer to this question if we change notion of “convergence” and this
is where we use Hilbert spaces

The collection of functions
{

(2π)−
1
2 einx

}∞
−∞

is an orthonormal set in L2[0, 2π].

– If it was an Orthonormal Basis, then Theorem II.6 would imply that for all functions
in L2[0, 2π],

f(x) = lim
M→∞

M∑
n=−M

cn(2π)−
1
2 einx

i.e., convergence in L2 norm.

Theorem II.9

If f ∈ L2[0, 2π], then
∑M

n=−M cn(2π)−
1
2 einx converges to f in the L2 norm as M →∞.
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