CAYLEY GRAPHS AND EXPANDERS PROJECT DOCUMENT

MOHABAT TARKESHIAN

Fall Term 2017

1. Definitions and examples

Let Γ be a group and $\Sigma = (\gamma_1, \gamma_2, \dots, \gamma_k) \in \Gamma^k$ be a k-tuple of group elements.

Definition 1.1. The directed Cayley graph associated to (Γ, Σ) is given by

 $\operatorname{Cay}^+(\Gamma, \Sigma) = (\Gamma, \{e_{\gamma,i}\}_{\gamma,i}, e_{\gamma,i} \mapsto (\gamma, \gamma \cdot \gamma_i))$

- $\operatorname{Cay}^{-}(\Gamma, \Sigma)$ is the transpose of Cay^{+} .
- $\operatorname{Cay}(\Gamma, \Sigma)$ is the symmetrization of Cay^+ .
- $\ \, \rightarrow \ \ \, \text{i.e., } \Sigma = \{\gamma_1, \gamma_2, \dots, \gamma_k\} \coprod \{\gamma_1^{-1}, \gamma_2^{-1}, \dots, \gamma_k^{-1}\}$

Let $m \in \mathbb{Z}_{\geq 0}$.

Definition 1.2. A complete graph K_m is a symmetric graph with $m \in \mathbb{Z}_{\geq 0}$ vertices such that there exists exactly one edge between every pair of distinct vertices, i.e.,

$$V(K_m) = 1, 2, \dots, m$$
$$E(K_m) = \{(v, w) \mid \text{ where } v, w \in V(K_m), v \neq w\}$$

The symmetrization of this graph (i.e., the "undirected" version is how this graph is usually visualized).

Remark 1.3. This is a simple graph because there is exactly one edge between any two *distinct* vertices.

Example 1.4. The symmetrizations of the complete graphs K_3, K_4, K_5 , and K_6 .

Example 1.5.

 $\operatorname{Cycle}_m \cong \operatorname{Cay}(\mathbb{Z}|m, \{\pm 1\})$ if and only if $m \ge 3$.

It is clear that $\operatorname{Cycle}_1 \ncong \operatorname{Cay}(\mathbb{Z}, \{\pm 1\})$). Also, $\operatorname{Cycle}_2 \ncong \operatorname{Cay}(\mathbb{Z}|2, \{\pm 1\})$ since in $\mathbb{Z}|2, 1 = -1$ and $\operatorname{Cay}(\mathbb{Z}|2, \{1\}) \cong \operatorname{Path}_2$ but clearly $\operatorname{Path}_2 \ncong \operatorname{Cycle}_2$.

Hence, $\operatorname{Cycle}_m \cong \operatorname{Cay}(\mathbb{Z}|m, \{\pm 1\}) \Rightarrow m \neq 1, 2$. If $m \geq 3$, then $\operatorname{Cay}(\mathbb{Z}|m, \{\pm 1\})$ is the graph with $V(G) = \mathbb{Z}|m$, and for every $v \in V(G)$, $\deg v = 2$, one edge $e \mapsto (v, v + 1)$ and $e' \mapsto (v, v - 1)$ (note: $\tau(e) \mapsto (v + 1, v)$ and $\tau(e') \mapsto (v - 1, v)$ by the symmetrization). Since this exactly describes a cycle graph on m vertices, then $\operatorname{Cay}(\mathbb{Z}|m, \{\pm 1\}) \cong \operatorname{Cycle}_m$.

Example 1.6. For all $m \ge 2$, $K_m \cong \operatorname{Cay}(\mathbb{Z}|m, \mathbb{Z}|m \setminus \{0\})$.

This is clear by the definition of a complete graph K_m , as it has an edge between two vertices if and only if the vertices are distinct. Hence, construct a Cayley graph on the group $\mathbb{Z}|m$ by defining Σ as excluding $\{0\}$ from the vertex set (i.e., excluding self-loops). Then, this describes a complete graph on m vertices.

Remark 1.7. The above examples show that Cayley graphs can have a completely different structure even if the group Γ is the same.

Example 1.8. A combinatorial example.

Let $n \geq 3$. Define V_n as the finite set given by all possible arrangements of a deck of n cards, denote it D_n :

 $V_n = \{ \text{all possible arrangements of a deck } D_n \text{ of } n \text{ cards} \}$

By the multiplicative rule for counting, then $|V_n| = n!$. Suppose that the arrangement $a_1a_2\cdots a_n$ represents a_1 as the card on top and a_n as the card on the bottom. Define G_n as the symmetric simple graph on n vertices such that the symmetrized edges correspond to the following possibilities:

- Exchanging the top two cards;
- Bringing the bottom card to the top;
- Connecting the top to the bottom; or
- Connecting the bottom to the top.

To conceptualize this, consider a deck D_3 of 3 cards a, b, c. Then, $V_n = \{abc, acb, cba, bac, cab, bca\}$.

- Exchanging the top two cards identifies the following edges: $abc \leftrightarrow bac$, $acb \leftrightarrow cab$ and $cba \leftrightarrow bca$.
- Bringing the bottom card to the top identifies the following edges: $abc \leftrightarrow cab, acb \leftrightarrow bac, cba \leftrightarrow acb$, and $bca \leftrightarrow abc$.
- Connecting the top to the bottom or the bottom to the top identifies the edges: $abc \leftrightarrow bca, acb \leftrightarrow cba, cba \leftrightarrow bac, bac \leftrightarrow acb, cab \leftrightarrow abc, and bca \leftrightarrow cab$

Remark 1.9. In the above transformations of arrangements, if two edges are found between two arrangements, since G_n is a *simple* graph, we consider both transformations as representing a single edge (i.e., no multiple edges).

This graph G_3 would appear as follows (by drawing one single undirected edge to represent an edge e and its transpose $\tau(e)$).

Remark 1.10. This is isomorphic to the Cayley graph $\operatorname{Cay}(S_n, T_n)$ where S_n is the symmetric group and $T_n = \{\tau \mid \tau \in \operatorname{sym}([n]), |\tau| = 2\}$ (here, τ denotes any transposition in the symmetric group S_n ; i.e., exchanging any two elements).

Example 1.11. A symmetric group example of a Cayley graph.

 $Cay(S_3, \Sigma)$ where $\Sigma = \{(12), (23), (123)\} \cup \{(12), (23), (132)\}$ (note: contains multiple edges).

Proposition 1.12. Cay (Γ, Σ) is 2k-regular.

Proof. This follows by definition of a Cayley graph and the fact that

$$\Sigma = \{\gamma_1, \gamma_2, \dots, \gamma_k\} \coprod \{\gamma_1^{-1}, \gamma_2^{-1}, \dots, \gamma_k^{-1}\}.$$

That is, for any vertex $v \in \Gamma$, there are 2k choices for an edge with their tail at v since (t,h)(e) = (v,w) if and only if $w = v \cdot \gamma_i$ for some $\gamma_i \in \Sigma$. There are 2k choices for γ_i . As there exist exactly $|\Sigma| = 2k$ edges with their tail at v then by symmetry, deg $v = 2k \Rightarrow \text{Cay}(\Gamma, \Sigma)$ is 2k-regular.

Proposition 1.13. $G = Cay(\Gamma, \Sigma)$ is connected if and only if Σ is a generating set of Γ .

Proof.

 \Rightarrow Suppose G is connected. Let $x \in \Gamma = V(G)$ be arbitrary.

Since G is connected, there exists some path of length $m \in \mathbb{Z}_{\geq 0}$ from $1 \in \Gamma$ to $x \in \Gamma$. For this m, let $f : \operatorname{Path}_m \to \operatorname{G}$ be a graph morphism such that $\operatorname{V}(f)(0) = 1$ and $\operatorname{V}(f)(m-1) = x$. For $0 \leq i \leq m-1$, denote $x_i = \operatorname{V}(f)(i) \in \operatorname{V}(\operatorname{G})$. Then, by definition of f and x_i , we have that

$$x_0 = 1$$
 and $x_m = x$

By definition of edges in $G = Cay(\Gamma, \Sigma)$, for each *i*, there exists some $\gamma_i \in \Sigma$ such that

$$E(f)(i) = (x_{i-1}, x_{i-1} \cdot \gamma_i) = (x_{i-1}, x_i)$$
$$\Rightarrow \quad x_i = x_{i-1} \cdot \gamma_i$$

By induction (and the definition of f and $Path_m$), then the following holds.

$$x = x_m = x_{m-1} \cdot \gamma_m = (x_{m-2} \cdot \gamma_{m-1}) \cdot \gamma_m = \dots = \gamma_1 \cdot \gamma_2 \cdot \gamma_3 \cdots \gamma_m$$

Hence, $x \in \langle \Sigma \rangle$. As $x \in \Gamma$ was arbitrary, then $\Gamma \subseteq \langle \Sigma \rangle$ and hence $\langle \Sigma \rangle = \Gamma$. Σ is a generating set of Γ .

 \Leftarrow On the other hand, suppose Σ is a generating set of the group Γ .

Let $x, y \in \Gamma = V(G)$ be arbitrary vertices of the cayley graph $Cay(\Gamma, \Sigma)$. By definition of groups, $x^{-1}y \in \Gamma$. Since $\Gamma = \langle \Sigma \rangle$, then there exists some $d \in \mathbb{Z}_{>0}$ such that

$$x^{-1}y = \gamma_1 \cdot \gamma_2 \cdots \gamma_d$$

Define $g : \operatorname{Path}_d \to G$ as the graph morphism given by the following.

$$V(g)(0) = x;$$

$$V(g)(i) = x \cdot \gamma_1 \gamma_2 \cdots \gamma_i \text{ for all } 1 \le i \le d; \text{ and}$$

$$E(g)(i-1,i) = (x \cdot \gamma_1 \gamma_2 \cdots \gamma_{i-1}, x \cdot \gamma_1 \gamma_2 \cdots \gamma_i) \text{ for all } 1 \le i \le d$$

This is a well-defined graph morphism since there exists an edge from the vertex $x \cdot \gamma_1 \gamma_2 \cdots \gamma_{i-1}$ to $x \cdot \gamma_1 \gamma_2 \cdots \gamma_{i-1} \gamma_i$ for all *i* (simply by the Cayley structure of the graph and multiplying by $\gamma_i \in \Sigma$).

Note that this morphism shows that V(g)(0) = x and $V(g)(d) = x \cdot \gamma_1 \cdot \gamma_2 \cdots \gamma_d = x \cdot (x^{-1}y) = y$. Hence, there exists a path of length d > 0 from x to y. As $x, y \in V(G)$ were arbitrary, then G is connected.

Proposition 1.14. Suppose Σ is a generating set of the group Γ . Cay (Γ, Σ) is bipartite \Leftrightarrow there exists a surjective group homomorphism $\pi : \Gamma \to \{\pm 1\}$ such that $\pi(\gamma_i) = -1$ for all $\gamma_i \in \Sigma$.

Proof.

⇒ Suppose that $\operatorname{Cay}(\Gamma, \Sigma)$ is bipartite. By definition, there exists a map (a colouring) $c: \Gamma \to \{\pm 1\}$ such that for all $v \sim w \in \Gamma$, $c(v) \neq c(w)$. Considering c(1), if $c(1) \neq 1$, then -c is also a colouring of the vertices Γ . Without loss of generality, assume that c(1) = 1.

Claim 1.15. c is a group homomorphism.

This can be shown by inductively taking steps away from $1 \in \Gamma$. If $1 \sim \gamma$, then by the colouring $c, c(\gamma) = -1$ and hence $c(\gamma) = c(\gamma \cdot 1) = -1 = c(\gamma) \cdot c(1)$. Continuing in this way will show that c is a group homomorphism such that $c(\gamma) = (-1)^k$ where k is the minimal path length from γ to 1 (note: Cay (Γ, Σ)) is connected so this is well-defined). Then, for any $\gamma, \gamma' \in \Gamma, c(\gamma \cdot \gamma') = c(\gamma) \cdot c(\gamma')$. Also, since $1 \sim \gamma_i$ for all i (by the tail-head map of the Cayley graph), then by this colouring/homomorphism: $c(\gamma_i \cdot 1) \neq c(1) = 1$, hence $c(\gamma_i) = -1$ for all i.

 \Leftarrow Conversely, suppose there exists a homomorphism $\pi : \Gamma \to \{\pm 1\}$ such that $\pi(\gamma_i) = -1$ for all $\gamma_i \in \Sigma$. Then, for any $\gamma \in \Gamma$, $\pi(\gamma \cdot \gamma_i) = \pi(\gamma) \cdot \pi(\gamma_i)$. This implies that $\pi(\gamma \cdot \gamma_i) = -\pi(\gamma) \neq \pi(\gamma)$. That is, for any $\gamma \in \Gamma$, $\pi(\gamma) \neq \pi(\gamma \cdot \gamma_i)$. In terms of vertices, then this is equivalent to stating that for any vertices of the Cayley graph $v, w \in V(\text{Cay}(\Gamma, \Sigma))$, if $v \sim w$, then $\pi(v) \neq \pi(w)$. By definition, then π is a colouring of the vertices of Cay(Γ, Σ) and thus Cay(Γ, Σ) is bipartite. □

Remark 1.16. The preceding proposition implies the following result: If $1 \in \Sigma$ then Cay (Γ, Σ) is not bipartite. i.e., $\pi(1 \cdot 1) = \pi(1) = \pi(1)^2$ and since $(-1) \neq (-1)^2$, then $\pi(1) \neq -1$.

2. Automorphisms of Cayley graphs and Cayley action graphs

Let Γ be a group, $\Sigma = (\gamma_1, \gamma_2, \dots, \gamma_k) \in \Gamma^k$ be an arbitrary k-tuple of group elements as before, and let $G = \text{Cay}(\Gamma, \Sigma)$ be the Cayley graph on (Γ, Σ) .

Consider an arbitrary group action of a group M on a set $X, M \times X \to X$.

Definition 2.1.

- (1) The group action is faithful if for every non-identity $m \in M$, there exists some $x \in X$ such that $m \cdot x \neq x$.
- (2) The group action is transitive if for every $x, y \in X$, there exists some $m \in M$ such that $m \cdot x = y$.
 - i.e., the group action has a single orbit.

Definition 2.2. An automorphism of $\operatorname{Cay}(\Gamma, \Sigma)$ is a bijective graph morphism $f : \operatorname{Cay}(\Gamma, \Sigma) \to \operatorname{Cay}(\Gamma, \Sigma)$. The set of graph automorphisms of G forms a group, called the Cayley automorphism group of G, denote this by Γ_{aut} .

Definition 2.3. A group action of Γ by graph automorphisms on $\operatorname{Cay}(\Gamma, \Sigma)$ is a group action $\Gamma_{aut} \times \operatorname{Cay}(\Gamma, \Sigma) \to \operatorname{Cay}(\Gamma, \Sigma)$.

- i.e., $(f, v) \mapsto V(f)(v)$ and $(f, e) \mapsto E(f)(e)$ for all $v \in V(G), e \in E(G)$ and where $f \in Hom(Cay(\Gamma, \Sigma))$ is bijective.

Proposition 2.4. The automorphism group Γ_{aut} acts faithfully and transitively on $\operatorname{Cay}(\Gamma, \Sigma)$; the automorphism f_g associated to $g \in \Gamma$ is given by

 $V(f_g)(x) = gx$ $E(f_g)(x, x\gamma_i) = (gx, gx\gamma_i)$ for all vertices $x \in \Gamma$ and edges $(x, x\gamma_i) \in E(\text{Cay}(\Gamma, \Sigma)).$

Proof. First note that this group action of Γ by graph automorphisms on $G = Cay(\Gamma, \Sigma)$ acts by sending $f_g \mapsto \{V(f_g)(G), E(f_g)(G)\} \subset G$.

It is faithful since for any $f_g \neq id_{\Gamma_{aut}}$, then $V(f_g)(x) \neq x$ for $x \neq 1$ by definition of f_g given above.

Also, it is transitive since for each $x, y \in V(G)$, define $g = yx^{-1}$, then $V(f_{yx^{-1}})(x) = yx^{-1}x = y$ by definition.

Remark 2.5. The above proposition is equivalent to saying that Γ acts by graph automorphisms on $\text{Cay}(\Gamma, \Sigma)$ and in particular, every vertex "looks the same."

Let $\Gamma \times \Omega \to \Omega$ be a left action of Γ on an arbitrary set Ω .

Definition 2.6. An directed action graph of Ω with respect to Σ , denoted $\mathcal{A}^+(\Omega, \Sigma)$ is defined by the following.

$$V(\mathcal{A}^+(\Omega, \Sigma)) = \Omega$$

$$E(\mathcal{A}^+(\Omega, \Sigma)) = (\Sigma \times \Omega) / \sim$$

$$(t, h)(e) = (\gamma_i \cdot \omega, \omega) \text{ for } e \in E(\mathcal{A}^+(\Omega, \Sigma))$$

where ~ is an equivalence relation on $\Sigma \times \Omega$ given by the following for all $\gamma_i \in \Sigma$ and $\omega \in \Omega$:

$$(\gamma_i, \omega) \sim (\gamma_i, \omega)$$
 and
 $\gamma_i \cdot \omega \neq \omega \Rightarrow (\gamma_i, \omega) \sim (\gamma_i^{-1}, \gamma_i \cdot \omega)$

Let $\Theta \leq \Gamma$ be a subgroup of Γ .

Definition 2.7. The Schreier graph of Γ/Θ with respect to Σ is the directed action graph $\mathcal{A}^+(\Gamma/\Theta, \Sigma)$ where Γ acts on Γ/Θ by $g \cdot (x\Theta) = (gx)\Theta$ for all $g \in \Gamma, x\Theta \in \Gamma/\Theta$.

Definition 2.8. The relative Cayley graph of Γ of Γ/Θ with respect to Θ is the Schreier graph of Γ/Θ with respect to Σ when $\Theta \leq \Gamma$ is normal. This is denoted by $\mathcal{C}^+(\Gamma/\Theta, \Sigma)$.

Lemma 2.9. For any $\omega \in \Omega$, there is a natural identification between Σ and the set of edges $\alpha \in \mathcal{A}^+(\Omega, \Sigma)$ with either $t(\alpha)$ or $h(\alpha)$ equal to ω . Specifically, $\mathcal{A}^+(\Omega, \Sigma)$ is k-regular.

Proof.

Fix $\omega \in \Omega$. Denote $\mathbf{G} = \mathcal{A}^+(\Omega, \Sigma)$. Define $E_\omega \subset \mathbf{E}(\mathbf{G})$ by the following.

$$E_{\omega} = \mathcal{E}(\mathcal{G}; \stackrel{\rightarrow}{\rightarrow} \omega) \cup \mathcal{E}(\mathcal{G}; \omega^{\rightarrow})$$

Define a map $\varphi : \Sigma \to E_{\omega}$ by $\varphi : \gamma_i \mapsto [(\gamma_i, \omega)]$ for all $\gamma_i \in \Sigma$ where $[(\gamma_i, \omega)]$ denotes the equivalence class of (γ_i, ω) with respect to \sim as in the definition of the action graph.

Claim: φ is a bijection.

First, φ is injective since if $\varphi(\gamma_i) = \varphi(\gamma_j)$, then $(\gamma_i, \omega) \sim (\gamma_j, \omega)$. By definition of this equivalence relation, either $\gamma_i = \gamma_j$ or $\gamma_i \omega \neq \omega$ implies that $(\gamma_j, \omega) = (\gamma_i^{-1}, \gamma_i \omega)$ but this is a contradiction since it implies that $\omega = \gamma_i \omega$. Hence, it follows that $\gamma_i = \gamma_j$. i.e., $\varphi(\gamma_i) = \varphi(\gamma_j) \Rightarrow \gamma_i = \gamma_j$ for all $\gamma_i, \gamma_j \in \Sigma$, so φ is injective.

Also, φ is surjective. Let $\alpha \in E_{\omega}$ be given by $\alpha = [(\gamma_j, y)]$ for some $\gamma_j \in \Sigma, y \in \Omega$. Since $\alpha \in E_{\omega}$, by definition, then either $t(\alpha) = \omega$ or $h(\alpha) = \omega$.

If $h(\alpha) = \omega$, then by $\alpha = [(\gamma_j, y)]$, this implies that $\omega = y$, thus $\alpha = \varphi(\gamma_j)$.

If $t(\alpha) = \omega$, then by the definition of the tail-head map of the action graph, $\omega = \gamma_j y \neq y$ and the equivalence relation ~ implies the following.

$$(\gamma_j, y) \sim (\gamma_j^{-1}, \gamma_j \cdot y)$$

$$\Rightarrow (\gamma_j, y) \sim (\gamma_j^{-1}, \gamma_j \cdot y) = (\gamma_j^{-1}, \omega)$$
$$\Rightarrow \quad \alpha = \varphi(\gamma_j^{-1})$$

In both cases, there exists some $\gamma \in \Sigma$ such that $\varphi(\gamma) = \alpha$. Thus, φ is surjective. Hence, for each $\omega \in \Omega$, there exists a bijection between Σ and E_{ω} , and thus $G = \mathcal{A}^+(\Omega, \Sigma)$ is $|\Sigma| = k$ -regular.

3. EXPANDERS: GENERAL

Let $G = (V, E, E \xrightarrow{(t,h)} V^2)$ be a finite symmetric k-regular graph $\rightsquigarrow |V| = n$ Let $X \subset V$ and $\overline{X} = V \setminus X$.

Definition 3.1. Recall the following definition.

 $E(G; X, \overline{X}) = \coprod_{x \in X} \coprod_{y \in \overline{X}} E(G; x, y)$ where E(G; x, y) is the set of edges from vertex x to vertex y.

- i.e., $E(G; x, y) = \{e \in E \mid t(e) = x, h(e) = y\}.$

Definition 3.2. The expansion constant h(G) of a finite graph is

$$h(\mathbf{G}) = \min_{\substack{X \subsetneq V, X \neq \emptyset}} \left\{ \frac{|\mathbf{E}(\mathbf{G}; X, \overline{X})|}{\min\{|X|, |\overline{X}|\}} \right\}$$
$$\Rightarrow \quad h(\mathbf{G}) = \min_{\substack{X \subsetneq V, X \neq \emptyset}} \left\{ \frac{|\mathbf{E}(\mathbf{G}; X, \overline{X})|}{|X|} \middle| |X| \le \frac{n}{2} \right\}$$

One could ask why the former implies the latter and why we only look at subsets of size less than or equal to $\frac{n}{2}$. Suppose that $X \subset V$ and $|X| > \frac{n}{2}$. Then, clearly $|\overline{X}| \leq \frac{n}{2}$ and hence $\min\{|X|, |\overline{X}|\} = |\overline{X}|$. i.e., "Y" = $\overline{X} \subset V$ is already considered in the above definition of the expansion constant h(G) since $|Y| \leq \frac{n}{2}$. So it makes sense to only consider the subsets of V that have size less than $\frac{n}{2}$, since all others are accounted for by taking the minimum of the sizes of a subset and its respective complement.

Corollary 3.3. $h(G) > 0 \Leftrightarrow G$ is connected.

Let $\{G\}_{i \in I}$ be a family of finite symmetric graphs.

Definition 3.4. $\{G\}_{i \in I}$ is a weak (one-sided) expander family if the following conditions hold.

- (1) $|V_i| \to \infty$ - i.e., for all $n \ge 1$, there exist only finitely many $i \in I$ such that $|V_i| \le n$.
- (2) $\liminf_{i \in I} h(\mathbf{G}_i) \ge h$ for some h > 0.
- (3) $\max\{\deg(v) \mid i \in I \text{ and } v \in V(G_i)\} \leq k \text{ for some } k > 0.$

Let $\{G\}_{i \in I}$ be a family of finite, symmetric, and k-regular graphs where $|V(G_i)| = n_i$ for each $i \in I$.

Definition 3.5. $\{G\}_{i \in I}$ an absolute expander family (or strong expander) if the following conditions hold.

(1) $|V_i| \to \infty$

(2) $\limsup_{i \in I} \max\{|\alpha_2(G_i)|, |\alpha_{n_i}(G_i)\} < k$ where $\operatorname{spec}(A(G_i)) = \{\alpha_1(G_i) \ge \alpha_2(G_i) \ge \cdots \ge \alpha_{n_i}(G_i)\}$ is the set of eigenvalues of the adjacency matrix of the graph G_i in decreasing order.

4. Cayley graphs as expanders

Let Γ be a group, $\Sigma = (\gamma_1, \gamma_2, \dots, \gamma_k) \in \Gamma^k$ be an arbitrary k-tuple of group elements as before, and let $G = \text{Cay}(\Gamma, \Sigma)$ be the Cayley graph on (Γ, Σ) .

Definition 4.1. The distance between any two vertices $x, y \in V$ is the minimum length of a path between x and y, denoted $\operatorname{dist}_{G}(x, y)$; if no path exists between x and y, define $\operatorname{dist}_{G}(x, y) = \infty$. If $\operatorname{dist}_{G}(x, y) \neq \infty$, then

 $\operatorname{dist}_{\mathcal{G}}(x,y) = \min_{\varphi \in \operatorname{Hom}_{\tau}(\operatorname{Path}_{d}^{+}, \operatorname{G})} \{ d \mid \varphi(0) = x, \varphi(d) = y \}$

- For any $x, y \in V$, $\operatorname{dist}_{G}(x, y) \in \{0, 1, \dots\} \cup \infty$.

Remark 4.2. dist is a metric on V and thus $(V(G), dist_G)$ is a metric space.

Remark 4.3. The definitions of distance and diameter of graphs holds for *any* finite graph, not just Cayley graphs.

Definition 4.4. The diameter of G is the largest distance between any two vertices.

$$\operatorname{diam}(\mathbf{G}) = \begin{cases} \sup_{x,y \in \mathbf{V}} \operatorname{dist}_{\mathbf{G}}(x,y) < \infty & \text{if } \mathbf{G} \text{ is connected} \\ \infty & \text{if } \mathbf{G} \text{ is disconnected} \end{cases}$$

Remark 4.5. Recall the following definition of "big-oh notation": Let $f, g : \mathbb{N} \to \mathbb{R}^+$. f(n) = O(g(n)) iff there exist constants N, c > 0 such that $f(n) \leq cg(n)$ for all n > N. i.e., at some point, f is bounded above by a constant times g.

Let $\{G_n\}_{n \in \mathbb{N}}$ be a sequence of finite graphs.

Definition 4.6. The sequence of finite graphs $\{G_n\}_{n\in N}$ has logarithmic diameter iff

 $\operatorname{diam}(\mathbf{G}_n) = O(\log |\mathbf{G}_n|)$

Let $\{\Gamma_n\}_{n\in\mathbb{N}}$ be a sequence of finite groups.

Definition 4.7. $\{\Gamma_n\}_{n\in\mathbb{N}}$ has logarithmic diameter if there exists some $d \in \mathbb{Z}_{>0}$ such that there exists a sequence $\{\Phi_n\}_{n\in\mathbb{N}}$ where for each $n, \Phi_n \subset \Gamma_n$ is a symmetric subset with $|\Phi_n| = d$, so that the sequence of Cayley graphs $(\operatorname{Cay}(\Gamma_n, \Phi_n))_{n\in\mathbb{N}}$ has logarithmic diameter.

Let Γ be a group, $\Sigma = (\gamma_1, \gamma_2, \dots, \gamma_k) \in \Gamma^k$ be an arbitrary k-tuple of group elements as before.

Definition 4.8. A word of length n in Σ is an element of the direct product Σ^n . If $w = (w_1, \ldots, w_n) \in \Sigma^n$, then w evaluates to g (or g can be expressed as w) iff $g = w_1 \cdot w_2 \cdots w_n$.

Example 4.9. Let $\Gamma = \mathbb{Z}$ and $\Sigma = \{-1, 1, 2, 5\}$.

Then, w = (1, 2, 1) is a word of length 3 in Σ and w' = (2, 2) is a word of length 2. Since 4 = 1 + 2 + 1 = 2 + 2, both w and w' evaluate to 4. That is, an element of the group can be expressed non-uniquely as a word in Σ .

Let $g \in \Gamma$ be such that it can be expressed as a word in Σ .

Definition 4.10. The word norm of g in Σ is the minimal length of any word in Σ which evaluates to g.

– Convention \rightsquigarrow Word of length 0 evaluates to the identity.

Using the assumptions at the beginning of this section: Γ is a group, $\Sigma \subset \Gamma$ be an arbitrary k-tuple of group elements, and $G = Cay(\Gamma, \Sigma)$.

Proposition 4.11.

- (1) G is connected if and only if every element of Γ can be expressed as a word in Σ .
- (2) If $a, b \in \Gamma$ and there exists a path from a to b, then $dist_G(a, b) = word norm of <math>a^{-1}b \in \Sigma$.
- (3) diam(G) equals the maximum of the word norms in Σ of elements of Γ .

Proof.

- (1) This is exactly equivalent to saying G is connected $\Leftrightarrow \Sigma$ generates Γ , as shown in Proposition 1.13
- (2) Suppose there exists a path of length d from a to b, i.e., $\operatorname{Hom}_{\tau}(\operatorname{Path}_{d}^{+}, \operatorname{G}) \neq \emptyset$. Let $(g_{0}, g_{1}, \ldots, g_{d})$ denote the vertices of this path in G. That is, $a = g_{0}, b = g_{d}$. Define

$$\gamma_j = g_{j-1}^{-1} g_j$$
 for all $j = 1, 2, \dots, d$

By definition of the (g_0, \ldots, g_d) path and the Cayley graph G on (Γ, Σ) , then $\gamma_j \in \Sigma$ for all j and there exists an edge in the Cayley graph from g_{j-1} to g_j by definition. Then, the following holds by construction.

$$\gamma_1 \gamma_2 \cdots \gamma_d = g_0^{-1} g_1 g_1^{-1} g_2 \cdots g_{d-1}^{-1} g_d$$
$$\gamma_1 \gamma_2 \cdots \gamma_d = g_0^{-1} g_d = a^{-1} b$$

Thus, $(\gamma_1, \gamma_2, \ldots, \gamma_d)$ is a word of length d in Σ that evaluates to $a^{-1}b$.

On the other hand, every word of length d in Σ that evaluates to $a^{-1}b$ can be associated with a path of length d in G from a to b. This is done by taking each element of the word as a vertex in the path. Now, $\operatorname{dist}_{G}(a, b)$ is the minimal length of all possible paths from a to b, which by the given correspondence, equals the minimal length of all words in Σ that evaluate to $a^{-1}b$. By definition, this is equivalent to the word norm of $a^{-1}b$ in Σ .

(3) If $g \in \Gamma$, then by part (2) of this proposition, $\operatorname{dist}_{G}(e, g)$ is the word norm of g. By definition of diam(G) as a supremum, then

$$\operatorname{diam}(\mathbf{G}) \ge \max_{g \in \Gamma} \operatorname{dist}_{\mathbf{G}}(e, g)$$

So diam(G) is greater than the maximum of the word norms of all $g \in \Gamma$. By (2), every distance is a word norm, and hence diam(G) attains the maximum and is equal to the maximum of the word norms in Σ of elements of Γ .

Remark 4.12. Part (3) of the above proposition asserts that the word norm of a group element $g \in \Gamma$ equals the distance from the identity element e to g in $G = Cay(\Gamma, \Sigma)$.

Motivation for constructing expanders: What assumptions are needed to conclude that a family of Cayley graphs is an expander?

Theorem 1. Expansion in Subgroups of $SL_2(\mathbb{Z})$

Let $\Sigma \subset SL_2(\mathbb{Z})$ be any finite subset, $\Theta = \langle \Sigma \rangle$ be the subgroup generated by Σ , and let p be a prime. Define

$$G_p = \operatorname{Cay}(SL_2(\mathbb{F}_p), \Sigma)$$

as the Cayley action graph of the finite quotient group $SL_2(\mathbb{F}_p)$ with respect to the reduction modulo p of the set Σ .

Then

 $\{G_p\}_{p \ge p_0}$ is expander $\Leftrightarrow G$ is connected for all $p \ge p_0$ and some p_0

Corollary 4.13. Let $k \ge 1, k \in \mathbb{Z}$. Define the subset $\Sigma \subset SL_2(\mathbb{Z})$ as follows.

$$\Sigma = \left\{ \begin{pmatrix} 1 & \pm k \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ \pm k & 1 \end{pmatrix} \right\} \subset SL_2(\mathbb{Z})$$

For a prime p, let $\Sigma_p :=$ the image of Σ modulo p.

If $p \nmid k$, then $\operatorname{Cay}(SL_2(\mathbb{F}_p), \Sigma_p)$ is connected, so $(\operatorname{Cay}(SL_2(\mathbb{F}_p), \Sigma_p))_{p \nmid k}$ is expander.

References

- A. Salehi Golsefidy and Péter P. Varjú. Expansion in perfect groups. Geometric and functional analysis, 22:1832–1891, September 2012.
- [2] Martin Kassabov. Symmetric groups and expander graphs. Inventiones mathematicae, 170:327–354, August 2007.
- [3] Emmanuel Kowalski. Expander Graphs. ETH Zürich, February 2016.
- [4] Mike Krebs and Anthony Shaheen. Expander Families and Cayley Graphs. Oxford University Press, 2011.