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1. DEFINITIONS AND EXAMPLES

Let I' be a group and ¥ = (71,72, ...,7%) € I'* be a k-tuple of group elements.
Definition 1.1. The directed Cayley graph associated to (I',X) is given by
Cay™(T, %) = (L, {ey,i}rir ey = (1,7 %))
—  Cay (I',Y) is the transpose of Cay™.
—  Cay(T',X) is the symmetrization of Cay™.

~ i‘e’a 2:{717727“'77k}H{7;177;17"‘771;1}

Let m € Zzo.

Definition 1.2. A complete graph K, is a symmetric graph with m € Zx vertices such that
there exists exactly one edge between every pair of distinct vertices, i.e.,

V(Kp)=1,2,...,m
E(K,,) = {(v,w) | where v,w € V(K,,),v # w}

The symmetrization of this graph (i.e., the “undirected” version is how this graph is usually
visualized).

Remark 1.3. This is a simple graph because there is exactly one edge between any two
distinct vertices.

Ezxample 1.4. The symmetrizations of the complete graphs K3, Ky, K5, and K.
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Ezxample 1.5.
Cycle,, = Cay(Z|m,{£1}) if and only if m > 3.

It is clear that Cycle, 2 Cay(Z,{£1})). Also, Cycle, # Cay(Z|2,{+£1}) since in Z|2,1 = —1
and Cay(Z|2,{1}) = Pathy but clearly Pathy 2 Cycle,.

Hence, Cycle,, = Cay(Z|m,{£1}) = m # 1,2. If m > 3, then Cay(Z|m,{£1}) is the
graph with V(G) = Z|m, and for every v € V(G), degv = 2 , one edge e — (v,v + 1) and
e — (v,v—1) (note: 7(e) — (v+1,v) and 7(¢’) — (v —1,v) by the symmetrization). Since
this exactly describes a cycle graph on m vertices, then Cay(Z|m,{£1}) = Cycle,,.

Ezample 1.6. For all m > 2, K,,, = Cay(Z|m,Z|m \ {0}).

This is clear by the definition of a complete graph K,,, as it has an edge between two vertices
if and only if the vertices are distinct. Hence, construct a Cayley graph on the group Z|m
by defining ¥ as excluding {0} from the vertex set (i.e., excluding self-loops). Then, this
describes a complete graph on m vertices.

Remark 1.7. The above examples show that Cayley graphs can have a completely different
structure even if the group I is the same.

Example 1.8. A combinatorial example.

Let n > 3. Define V,, as the finite set given by all possible arrangements of a deck of n cards,
denote it D,,:

V., = {all possible arrangements of a deck D,, of n cards}

By the multiplicative rule for counting, then |V,,| = n!. Suppose that the arrangement
aias - - - a, represents a; as the card on top and a, as the card on the bottom. Define G,
as the symmetric simple graph on n vertices such that the symmetrized edges correspond to
the following possibilities:

e Exchanging the top two cards;

e Bringing the bottom card to the top;
e Connecting the top to the bottom; or
e Connecting the bottom to the top.

To conceptualize this, consider a deck D3 of 3 cards a, b, ¢. Then, V,, = {abc, acb, cba, bac, cab, bca}.

e Exchanging the top two cards identifies the following edges: abc <> bac, ach <> cab
and cba < bca.

e Bringing the bottom card to the top identifies the following edges: abc <> cab, achb <>
bac, cba <> acb, and bca <> abe.

e Connecting the top to the bottom or the bottom to the top identifies the edges:

abe < bea, achb < cba, cba <> bac, bac <> acb, cab <> abc, and bca <> cab
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Remark 1.9. In the above transformations of arrangements, if two edges are found between
two arrangements, since G,, is a simple graph, we consider both transformations as repre-
senting a single edge (i.e., no multiple edges).

This graph Gz would appear as follows (by drawing one single undirected edge to represent
an edge e and its transpose 7(e)).

beca

abc cab

ach bac

cba

Remark 1.10. This is isomorphic to the Cayley graph Cay(S,,, T,,) where S, is the symmetric
group and T,, = {7 | 7 € sym([n]),|7| = 2} (here, 7 denotes any tranpsosition in the
symmetric group S,; i.e., exchanging any two elements).

Example 1.11. A symmetric group example of a Cayley graph.
Cay(Ss, 2) where X = {(12),(23), (123) }U{(12), (23), (132)} (note: contains multiple edges).

(23)

(1) (12)



Proposition 1.12. Cay(I', X) is 2k-regular.

Proof. This follows by definition of a Cayley graph and the fact that

S={yr ot [[nhw o'

That is, for any vertex v € I, there are 2k choices for an edge with their tail at v since
(t,h)(e) = (v,w) if and only if w = v-~; for some ~; € X. There are 2k choices for ;. As there
exist exactly |X| = 2k edges with their tail at v then by symmetry, degv = 2k = Cay(T", X)
is 2k-regular. 0

Proposition 1.13. G = Cay(I', X)) is connected if and only if ¥ is a generating set of T".

Proof.
= Suppose G is connected. Let z € I' = V(G) be arbitrary.

Since G is connected, there exists some path of length m € Z>, from 1 € I" tox € I'. For this
m, let f : Path,, — G be a graph morphism such that V(f)(0) = 1 and V(f)(m — 1) = z.
For 0 <i <m — 1, denote x; = V(f)(i) € V(G). Then, by definition of f and x;, we have
that

ro=1land z,, =z

By definition of edges in G = Cay(T", X)), for each 4, there exists some ~; € 3 such that
E(f)(i) = (zic1, 21 - i) = (51, 24)
= T =T
By induction (and the definition of f and Path,,), then the following holds.
T =T =Tim—1 " VYm = (Tm-2 " Ym=1) " Vm =" =Y1"%2" Y3 Tm
Hence, z € (¥). As x € I' was arbitrary, then I' C () and hence (¥) =T". ¥ is a generating
set of T'.
< On the other hand, suppose ¥ is a generating set of the group I'.

Let z,y € I' = V(G) be arbitrary vertices of the cayley graph Cay(I',X). By definition of
groups, z 'y € T'. Since T’ = (3}, then there exists some d € Z~( such that
Ty =m
Define g : Pathy; — G as the graph morphism given by the following.
V(9)(0) = =;
V(g)(i) =z -y17y2---; for all 1 <i < d; and
E(g)(i —1,4) = (z-myevi-1,2 -y y) forall 1 <i<d

This is a well-defined graph morphism since there exists an edge from the vertex z-y,72 - - - v;_1
to x - y1y2 -+ Y1y for all @ (simply by the Cayley structure of the graph and multiplying

4



Note that this morphism shows that V(g)(0) = z and V(g)(d) = z-y1-72 - ya = z-(x"'y) =
y. Hence, there exists a path of length d > 0 from z to y. As z,y € V(G) were arbitrary,
then G is connected.

O

Proposition 1.14. Suppose ¥ is a generating set of the group I.
Cay(I',X) is bipartite < there exists a surjective group homomorphism m : I' — {£1} such
that m(v;) = —1 for all v; € X.

Proof.

= Suppose that Cay(I',X) is bipartite. By definition, there exists a map (a colouring)
c¢: ' — {£1} such that for all v ~ w € T, ¢(v) # ¢(w). Considering ¢(1), if ¢(1) # 1, then
—c is also a colouring of the vertices I'. Without loss of generality, assume that ¢(1) = 1.

Claim 1.15. c¢ is a group homomorphism.

This can be shown by inductively taking steps away from 1 € I'. If 1 ~ ~, then by the
colouring ¢, ¢(y) = —1 and hence ¢(y) = ¢(y-1) = =1 = ¢(7) - ¢(1). Continuing in this way
will show that ¢ is a group homomorphism such that c(y) = (—1)* where k is the minimal
path length from ~ to 1 (note: Cay(I",¥) is connected so this is well-defined). Then, for any
v,v €T, e(y-v) = c(y)-e(v). Also, since 1 ~ ~; for all i (by the tail-head map of the
Cayley graph), then by this colouring/homomorphism: ¢(;-1) # ¢(1) = 1, hence ¢(7;) = —1
for all 7.

< Conversely, suppose there exists a homomorphism 7 : I' — {1} such that 7(7;) = —1
for all v; € ¥. Then, for any v € T, w(vy - ;) = m(7) - (7). This implies that (v - ~;) =
—m(y) # m(y). That is, for any v € ', w(y) # 7(y - ;). In terms of vertices, then this is
equivalent to stating that for any vertices of the Cayley graph v, w € V(Cay(T', X)), if v ~ w,
then m(v) # m(w). By definition, then 7 is a colouring of the vertices of Cay(I", ¥) and thus
Cay(I', X)) is bipartite. O

Remark 1.16. The preceding proposition implies the following result: If 1 € ¥ then Cay(I', X)
is not bipartite. i.e., 7(1-1) = 7(1) = 7(1)? and since (—1) # (—1)?, then 7(1) # —1.



2. AUTOMORPHISMS OF CAYLEY GRAPHS AND CAYLEY ACTION GRAPHS

Let T be a group, ¥ = (71,72, -..,7) € ¥ be an arbitrary k-tuple of group elements as
before, and let G = Cay(I', ¥) be the Cayley graph on (I", X).

Consider an arbitrary group action of a group M on a set X, M x X — X.
Definition 2.1.

(1) The group action is faithful if for every non-identity m € M, there exists some x € X
such that m - x # x.

(2) The group action is transitive if for every x,y € X, there exists some m € M such
that m-x =y.
— i.e., the group action has a single orbit.

Definition 2.2. An automorphism of Cay (I, X)) is a bijective graph morphism f : Cay(I", ¥) —
Cay(I',X). The set of graph automorphisms of G forms a group, called the Cayley automor-
phism group of G, denote this by I' ..

Definition 2.3. A group action of I by graph automorphisms on Cay(I",X) is a group action
Lot x Cay(T',3) — Cay(I', X).

— de, (f,v) = V(f)(v) and (f,e) — E(f)(e) for all v € V(G),e € E(G) and where
f € Hom(Cay(T", X)) is bijective.

Proposition 2.4. The automorphism group Uy, acts faithfully and transitively on Cay(I", X);
the automorphism f, associated to g € I' is given by

V(fo)(x) = gx

E(fy) (z,27) = (9, gz7:)
for all vertices x € T and edges (x,xv;) € E(Cay(T', X)).

Proof. First note that this group action of I' by graph automorphisms on G = Cay(I', X)
acts by sending f, — {V(f,)(G), E(f,)(G)} C G.

It is faithful since for any f, # idr,,,, then V(f,)(x) # x for  # 1 by definition of f, given
above.

Also, it is transitive since for each z,y € V(G), define g = yz ™, then V(f,,—1)(z) = yz 'z

y by definition. 0

Remark 2.5. The above proposition is equivalent to saying that I acts by graph automor-
phisms on Cay(I', ) and in particular, every vertex “looks the same.”



Let I' x 2 — 2 be a left action of I' on an arbitrary set €.

Definition 2.6. An directed action graph of Q with respect to 2, denoted A1 (2, X) is defined
by the following.
V(AT (O, D)) =0
E(AT(2,3)) = (5 x Q)/ ~
(t,h)(e) = (vi - w,w) for e € E(AT (2, X))
where ~ is an equivalence relation on ¥ x €) given by the following for all 7, € ¥ and w € :
(7i7w) ~ (7i7w> and
Yi - W 7&0) = (7i7w) ~ (P)/z_laﬁ)/l 'Cd)

Let © < T be a subgroup of I'.

Definition 2.7. The Schreier graph of I'/© with respect to ¥ is the directed action graph
AT(T/6,%) where I" acts on I'/© by ¢ - (2©) = (gx)O for all g € ', 20 € T'/O.

Definition 2.8. The relative Cayley graph of I" of I'/© with respect to © is the Schreier graph
of T'/© with respect to 3 when © < T is normal. This is denoted by C*(I'/©, X).

Lemma 2.9. For any w € €, there is a natural identification between Y and the set of edges
a € AT(Q,X) with either t(a) or h(a) equal to w. Specifically, AT (Q, %) is k-regular.

Proof.

Fix w € Q. Denote G = AT (£, X). Define E, C E(G) by the following.
E,=E(G;7w)UE(G;w™)

Define a map ¢ : ¥ — E, by ¢ : v — [(i,w)] for all 7; € ¥ where [(7;,w)] denotes the

equivalence class of (7;,w) with respect to ~ as in the definition of the action graph.

Claim: ¢ is a bijection.

First, ¢ is injective since if ¢(v;) = ¢(v;), then (y;,w) ~ (7yj,w). By definition of this
equivalence relation, either 7; = 7; or v;w # w implies that (v;,w) = (7, ', viw) but this
is a contradiction since it implies that w = ~v;w. Hence, it follows that v, = v,. ie.,
©(vi) = @(vj) = vi =, for all v;,7v; € X, so ¢ is injective.

Also, ¢ is surjective. Let a € E,, be given by a = [(7;,y)] for some 7; € X,y € €. Since
a € E,, by definition, then either t(a) = w or h(a) = w.

If h(a) = w, then by o = [(7;, y)], this implies that w = y, thus a = ¢(v;).

If (o) = w, then by the definition of the tail-head map of the action graph, w = v,y # y
and the equivalence relation ~ implies the following.

(v y) ~ (5% - v)
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= ()~ (5 Ly = (4 w)

In both cases, there exists some v € 3 such that ¢(y) = a. Thus, ¢ is surjective. Hence,
for each w € Q, there exists a bijection between ¥ and E,, and thus G = AT(Q,X) is
|X| = k-regular. O



3. EXPANDERS: GENERAL

Let G = (V,E,E ) V?) be a finite symmetric k-regular graph  ~» |V |=n
Let X C Vand X = V\X.
Definition 3.1. Recall the following definition.

E(G; X, X) = [l,ex [1,ex E(G; 2, y) where E(G;z,y) is the set of edges from vertex x to
vertex y.

- le, E(Giz,y) ={ec E|t(e) =z, h(e) =y}
Definition 3.2. The expansion constant h(G) of a finite graph is

{ |E(G; X, X)| }
min T
xcv.x#0 | min{| X|, | X|}

. |E(G; X, X)) n
— ARy < 2
= MG Xénv})?#@{ x| =3

One could ask why the former implies the latter and why we only look at subsets of size less

than or equal to 2. Suppose that X C V and |X| > 2. Then, clearly |[X| < 2 and hence

min{|X|, | X|} = |X]. i.e., “¥Y” = X C V is already considered in the above definition of the
expansion constant h(G) since Y| < 2. So it makes sense to only consider the subsets of V
that have size less than 3, since all others are accounted for by taking the minimum of the
sizes of a subset and its respective complement.

Corollary 3.3. h(G) > 0 < G is connected.

Let {G}ier be a family of finite symmetric graphs.
Definition 3.4. {G}ics is a weak (one-sided) expander family if the following conditions hold.

(1) |Vi] = o0
— e, for all n > 1, there exist only finitely many ¢ € I such that | V;| < n.

(2) liminf;e; A(G;) > h for some h > 0.

(3) max{deg(v) | i € I and v € V(G;)} < k for some k > 0.

Let {G}icr be a family of finite, symmetric, and k-regular graphs where | V(G;)| = n; for
each i € I.

Definition 3.5. {G};er an absolute expander family (or strong expander) if the following

conditions hold.
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(1) | V;] = o0

(2) limsup,;c; max{|aa(G;)|, |an, (Gi)} < k
where spec(A(G;)) = {a1(G;) > az(Gy) > -+ > a,,,(G;)} is the set of eigenvalues
of the adjacency matrix of the graph G; in decreasing order.
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4. CAYLEY GRAPHS AS EXPANDERS
Let T be a group, ¥ = (71,72,.--,7%) € ['* be an arbitrary k-tuple of group elements as
before, and let G = Cay(I', X) be the Cayley graph on (I",X).

Definition 4.1. The distance between any two vertices x,y € V is the minimum length of
a path between x and y, denoted distg(z,y); if no path exists between x and y, define
distg(z,y) = oo. If distg(z,y) # oo, then

distc(z,y) = min ~ {d | (0) =, ¢(d) =y}
peHom (Pathj{,G)

—  For any z,y € V, distg(x,y) € {0,1,...} Uooc.
Remark 4.2. dist is a metric on V and thus (V(G), distg) is a metric space.

Remark 4.3. The definitions of distance and diameter of graphs holds for any finite graph,
not just Cayley graphs.

Definition 4.4. The diameter of G is the largest distance between any two vertices.

sup, ey dista(z,y) < oo ifG is connected

diam(G) = {

00 if G is disconnected

Remark 4.5. Recall the following definition of “big-oh notation”: Let f,g: N — R*. f(n) =
O(g(n)) iff there exist constants N, ¢ > 0 such that f(n) < cg(n) for all n > N. i.e., at some
point, f is bounded above by a constant times g.

Let {G,, }nen be a sequence of finite graphs.

Definition 4.6. The sequence of finite graphs {G, }en has logarithmic diameter iff
diam(G,,) = O(log | G, |)

Let {I',,}nen be a sequence of finite groups.

Definition 4.7. {I',}nen has logarithmic diameter if there exists some d € Z-( such that
there exists a sequence {®,},ey where for each n, ®,, C I',, is a symmetric subset with
|®,,| = d, so that the sequence of Cayley graphs (Cay(I',, ®,,))nen has logarithmic diameter.

Let T’ be a group, ¥ = (71,72,...,7) € I'* be an arbitrary k-tuple of group elements as
before.

Definition 4.8. A word of length n in ¥ is an element of the direct product X". If w =
(wy,...,w,) € X", then w evaluates to g (or g can be expressed as w) iff g = wy - wo - - - wy,.
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Ezample 4.9. Let I' = Z and ¥ = {-1,1,2,5}.

Then, w = (1,2,1) is a word of length 3 in ¥ and w’ = (2,2) is a word of length 2. Since
4=1+2+1=2+2, both w and w’ evaluate to 4. That is, an element of the group can be
expressed non-uniquely as a word in .

Let g € T" be such that it can be expressed as a word in X.

Definition 4.10. The word norm of g in ¥ is the minimal length of any word in » which
evaluates to g.

—  Convention ~» Word of length 0 evaluates to the identity.

Using the assumptions at the beginning of this section: I is a group, > C I' be an arbitrary
k-tuple of group elements, and G = Cay([', X).

Proposition 4.11.

(1) G is connected if and only if every element of T can be expressed as a word in .

(2) Ifa,b € T and there exists a path from a to b, then distg(a,b) = word norm of a™1b €
2.

(3) diam(G) equals the mazimum of the word norms in ¥ of elements of .

Proof.

(1) This is exactly equivalent to saying G is connected < X generates I', as shown in
Proposition 1.13

(2) Suppose there exists a path of length d from a to b, i.e., Hom,(Path}, G) # @. Let
(90,91, - - -, ga) denote the vertices of this path in G. That is, a = g, b = gg4.
Define
v =g g forall j=1,2,...,d
By definition of of the (go,...,g4) path and the Cayley graph G on (T',X), then
v; € X for all j and there exists an edge in the Cayley graph from g¢;_; to g; by
definition. Then, the following holds by construction.

ViYe Ve = 0o G191 G2 91 9d

NY2a =Gy ga=0a b
Thus, (71,72, .- .,74) is a word of length d in ¥ that evaluates to a='b.

On the other hand, every word of length d in ¥ that evaluates to a='b can be
associated with a path of length d in G from a to b. This is done by taking each
element of the word as a vertex in the path. Now, distg(a, b) is the minimal length of

all possible paths from a to b, which by the given correspondence, equals the minimal
12



length of all words in ¥ that evaluate to a~'b. By definition, this is equivalent to the
word norm of a1 in X.

(3) If g € T, then by part (2) of this proposition, distg(e, g) is the word norm of g. By
definition of diam(G) as a supremum, then

diam(G) > maxdistg(e, g)
gel

So diam(G) is greater than the maximum of the word norms of all g € I'. By (2),
every distance is a word norm, and hence diam(G) attains the maximum and is equal
to the maximum of the word norms in X of elements of I'.

O

Remark 4.12. Part (3) of the above proposition asserts that the word norm of a group
element g € I equals the distance from the identity element e to ¢ in G = Cay(I', ).

Motivation for constructing expanders: What assumptions are needed to conclude that a
family of Cayley graphs is an expander?

Theorem 1. Expansion in Subgroups of SLs(Z)

Let 3 C SLo(Z) be any finite subset, © = () be the subgroup generated by X, and let p be
a prime. Define

G, = Cay(SLy(F,),X)
as the Cayley action graph of the finite quotient group SLs(IF,) with respect to the reduction
modulo p of the set 3.

Then
{G,}p>p, 1s expander < G is connected for all p > py and some pg

Corollary 4.13. Let k > 1,k € Z. Define the subset ¥ C SLo(Z) as follows.

{6 ) (4 ) e

For a prime p, let ¥, := the image of ¥ modulo p.
If ptk, then Cay(SLy(F,),%,) is connected, so (Cay(SLa(F,),%,))pm is expander.
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