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1. Definitions and examples

Let Γ be a group and Σ = (γ1, γ2, . . . , γk) ∈ Γk be a k-tuple of group elements.

Definition 1.1. The directed Cayley graph associated to (Γ,Σ) is given by

Cay+(Γ,Σ) = (Γ, {eγ,i}γ,i, eγ,i 7→ (γ, γ · γi))
– Cay−(Γ,Σ) is the transpose of Cay+.

– Cay(Γ,Σ) is the symmetrization of Cay+.

 i.e., Σ = {γ1, γ2, . . . , γk}
∐
{γ−1

1 , γ−1
2 , . . . , γ−1

k }

Let m ∈ Z≥0.

Definition 1.2. A complete graph Km is a symmetric graph with m ∈ Z≥0 vertices such that
there exists exactly one edge between every pair of distinct vertices, i.e.,

V(Km) = 1, 2, . . . ,m

E(Km) = {(v, w) | where v, w ∈ V(Km), v 6= w}
The symmetrization of this graph (i.e., the “undirected” version is how this graph is usually
visualized).

Remark 1.3. This is a simple graph because there is exactly one edge between any two
distinct vertices.

Example 1.4. The symmetrizations of the complete graphs K3, K4, K5, and K6.
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Example 1.5.

Cyclem
∼= Cay(Z|m, {±1}) if and only if m ≥ 3.

It is clear that Cycle1 � Cay(Z, {±1})). Also, Cycle2 � Cay(Z|2, {±1}) since in Z|2, 1 = −1
and Cay(Z|2, {1}) ∼= Path2 but clearly Path2 � Cycle2.

Hence, Cyclem
∼= Cay(Z|m, {±1}) ⇒ m 6= 1, 2. If m ≥ 3, then Cay(Z|m, {±1}) is the

graph with V(G) = Z|m, and for every v ∈ V(G), deg v = 2 , one edge e 7→ (v, v + 1) and
e′ 7→ (v, v− 1) (note: τ(e) 7→ (v+ 1, v) and τ(e′) 7→ (v− 1, v) by the symmetrization). Since
this exactly describes a cycle graph on m vertices, then Cay(Z|m, {±1}) ∼= Cyclem.

Example 1.6. For all m ≥ 2, Km
∼= Cay(Z|m,Z|m \ {0}).

This is clear by the definition of a complete graph Km, as it has an edge between two vertices
if and only if the vertices are distinct. Hence, construct a Cayley graph on the group Z|m
by defining Σ as excluding {0} from the vertex set (i.e., excluding self-loops). Then, this
describes a complete graph on m vertices.

Remark 1.7. The above examples show that Cayley graphs can have a completely different
structure even if the group Γ is the same.

Example 1.8. A combinatorial example.

Let n ≥ 3. Define Vn as the finite set given by all possible arrangements of a deck of n cards,
denote it Dn:

Vn = {all possible arrangements of a deck Dn of n cards}
By the multiplicative rule for counting, then |Vn| = n!. Suppose that the arrangement
a1a2 · · · an represents a1 as the card on top and an as the card on the bottom. Define Gn

as the symmetric simple graph on n vertices such that the symmetrized edges correspond to
the following possibilities:

• Exchanging the top two cards;

• Bringing the bottom card to the top;

• Connecting the top to the bottom; or

• Connecting the bottom to the top.

To conceptualize this, consider a deckD3 of 3 cards a, b, c. Then, Vn = {abc, acb, cba, bac, cab, bca}.

• Exchanging the top two cards identifies the following edges: abc ↔ bac, acb ↔ cab
and cba↔ bca.

• Bringing the bottom card to the top identifies the following edges: abc↔ cab, acb↔
bac, cba↔ acb, and bca↔ abc.

• Connecting the top to the bottom or the bottom to the top identifies the edges:
abc↔ bca, acb↔ cba, cba↔ bac, bac↔ acb, cab↔ abc, and bca↔ cab
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Remark 1.9. In the above transformations of arrangements, if two edges are found between
two arrangements, since Gn is a simple graph, we consider both transformations as repre-
senting a single edge (i.e., no multiple edges).

This graph G3 would appear as follows (by drawing one single undirected edge to represent
an edge e and its transpose τ(e)).

bca

cba

acb bac

abc cab

Remark 1.10. This is isomorphic to the Cayley graph Cay(Sn, Tn) where Sn is the symmetric
group and Tn = {τ | τ ∈ sym([n]), |τ | = 2} (here, τ denotes any tranpsosition in the
symmetric group Sn; i.e., exchanging any two elements).

Example 1.11. A symmetric group example of a Cayley graph.

Cay(S3,Σ) where Σ = {(12), (23), (123)}∪{(12), (23), (132)} (note: contains multiple edges).

(132) (13)

(23)

(123)

(12)(1)
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Proposition 1.12. Cay(Γ,Σ) is 2k-regular.

Proof. This follows by definition of a Cayley graph and the fact that

Σ = {γ1, γ2, . . . , γk}
∐
{γ−1

1 , γ−1
2 , . . . , γ−1

k }.

That is, for any vertex v ∈ Γ, there are 2k choices for an edge with their tail at v since
(t, h)(e) = (v, w) if and only if w = v·γi for some γi ∈ Σ. There are 2k choices for γi. As there
exist exactly |Σ| = 2k edges with their tail at v then by symmetry, deg v = 2k ⇒ Cay(Γ,Σ)
is 2k-regular. �

Proposition 1.13. G = Cay(Γ,Σ) is connected if and only if Σ is a generating set of Γ.

Proof.

⇒ Suppose G is connected. Let x ∈ Γ = V(G) be arbitrary.

Since G is connected, there exists some path of length m ∈ Z≥0 from 1 ∈ Γ to x ∈ Γ. For this
m, let f : Pathm → G be a graph morphism such that V(f)(0) = 1 and V(f)(m − 1) = x.
For 0 ≤ i ≤ m − 1, denote xi = V(f)(i) ∈ V(G). Then, by definition of f and xi, we have
that

x0 = 1 and xm = x

By definition of edges in G = Cay(Γ,Σ), for each i, there exists some γi ∈ Σ such that

E(f)(i) = (xi−1, xi−1 · γi) = (xi−1, xi)

⇒ xi = xi−1 · γi
By induction (and the definition of f and Pathm), then the following holds.

x = xm = xm−1 · γm = (xm−2 · γm−1) · γm = · · · = γ1 · γ2 · γ3 · · · γm
Hence, x ∈ 〈Σ〉. As x ∈ Γ was arbitrary, then Γ ⊆ 〈Σ〉 and hence 〈Σ〉 = Γ. Σ is a generating
set of Γ.

⇐ On the other hand, suppose Σ is a generating set of the group Γ.

Let x, y ∈ Γ = V(G) be arbitrary vertices of the cayley graph Cay(Γ,Σ). By definition of
groups, x−1y ∈ Γ. Since Γ = 〈Σ〉, then there exists some d ∈ Z>0 such that

x−1y = γ1 · γ2 · · · γd
Define g : Pathd → G as the graph morphism given by the following.

V(g)(0) = x;

V(g)(i) = x · γ1γ2 · · · γi for all 1 ≤ i ≤ d; and

E(g)(i− 1, i) = (x · γ1γ2 · · · γi−1, x · γ1γ2 · · · γi) for all 1 ≤ i ≤ d

This is a well-defined graph morphism since there exists an edge from the vertex x·γ1γ2 · · · γi−1

to x · γ1γ2 · · · γi−1γi for all i (simply by the Cayley structure of the graph and multiplying
by γi ∈ Σ).
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Note that this morphism shows that V(g)(0) = x and V(g)(d) = x ·γ1 ·γ2 · · · γd = x ·(x−1y) =
y. Hence, there exists a path of length d > 0 from x to y. As x, y ∈ V(G) were arbitrary,
then G is connected.

�

Proposition 1.14. Suppose Σ is a generating set of the group Γ.
Cay(Γ,Σ) is bipartite ⇔ there exists a surjective group homomorphism π : Γ → {±1} such
that π(γi) = −1 for all γi ∈ Σ.

Proof.

⇒ Suppose that Cay(Γ,Σ) is bipartite. By definition, there exists a map (a colouring)
c : Γ → {±1} such that for all v ∼ w ∈ Γ, c(v) 6= c(w). Considering c(1), if c(1) 6= 1, then
−c is also a colouring of the vertices Γ. Without loss of generality, assume that c(1) = 1.

Claim 1.15. c is a group homomorphism.

This can be shown by inductively taking steps away from 1 ∈ Γ. If 1 ∼ γ, then by the
colouring c, c(γ) = −1 and hence c(γ) = c(γ · 1) = −1 = c(γ) · c(1). Continuing in this way
will show that c is a group homomorphism such that c(γ) = (−1)k where k is the minimal
path length from γ to 1 (note: Cay(Γ,Σ) is connected so this is well-defined). Then, for any
γ, γ′ ∈ Γ, c(γ · γ′) = c(γ) · c(γ′). Also, since 1 ∼ γi for all i (by the tail-head map of the
Cayley graph), then by this colouring/homomorphism: c(γi ·1) 6= c(1) = 1, hence c(γi) = −1
for all i.

⇐ Conversely, suppose there exists a homomorphism π : Γ → {±1} such that π(γi) = −1
for all γi ∈ Σ. Then, for any γ ∈ Γ, π(γ · γi) = π(γ) · π(γi). This implies that π(γ · γi) =
−π(γ) 6= π(γ). That is, for any γ ∈ Γ, π(γ) 6= π(γ · γi). In terms of vertices, then this is
equivalent to stating that for any vertices of the Cayley graph v, w ∈ V(Cay(Γ,Σ)), if v ∼ w,
then π(v) 6= π(w). By definition, then π is a colouring of the vertices of Cay(Γ,Σ) and thus
Cay(Γ,Σ) is bipartite. �

Remark 1.16. The preceding proposition implies the following result: If 1 ∈ Σ then Cay(Γ,Σ)
is not bipartite. i.e., π(1 · 1) = π(1) = π(1)2 and since (−1) 6= (−1)2, then π(1) 6= −1.
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2. Automorphisms of Cayley graphs and Cayley action graphs

Let Γ be a group, Σ = (γ1, γ2, . . . , γk) ∈ Γk be an arbitrary k-tuple of group elements as
before, and let G = Cay(Γ,Σ) be the Cayley graph on (Γ,Σ).

Consider an arbitrary group action of a group M on a set X, M ×X → X.

Definition 2.1.

(1) The group action is faithful if for every non-identity m ∈M , there exists some x ∈ X
such that m · x 6= x.

(2) The group action is transitive if for every x, y ∈ X, there exists some m ∈ M such
that m · x = y.

– i.e., the group action has a single orbit.

Definition 2.2. An automorphism of Cay(Γ,Σ) is a bijective graph morphism f : Cay(Γ,Σ)→
Cay(Γ,Σ). The set of graph automorphisms of G forms a group, called the Cayley automor-
phism group of G, denote this by Γaut.

Definition 2.3. A group action of Γ by graph automorphisms on Cay(Γ,Σ) is a group action
Γaut × Cay(Γ,Σ)→ Cay(Γ,Σ).

– i.e., (f, v) 7→ V(f)(v) and (f, e) 7→ E(f)(e) for all v ∈ V(G), e ∈ E(G) and where
f ∈ Hom(Cay(Γ,Σ)) is bijective.

Proposition 2.4. The automorphism group Γaut acts faithfully and transitively on Cay(Γ,Σ);
the automorphism fg associated to g ∈ Γ is given by

V (fg)(x) = gx

E(fg) (x, xγi) = (gx, gxγi)

for all vertices x ∈ Γ and edges (x, xγi) ∈ E(Cay(Γ,Σ)).

Proof. First note that this group action of Γ by graph automorphisms on G = Cay(Γ,Σ)
acts by sending fg 7→ {V (fg)(G), E(fg)(G)} ⊂ G.

It is faithful since for any fg 6= idΓaut , then V (fg)(x) 6= x for x 6= 1 by definition of fg given
above.

Also, it is transitive since for each x, y ∈ V(G), define g = yx−1, then V(fyx−1)(x) = yx−1x =
y by definition. �

Remark 2.5. The above proposition is equivalent to saying that Γ acts by graph automor-
phisms on Cay(Γ,Σ) and in particular, every vertex “looks the same.”
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Let Γ× Ω→ Ω be a left action of Γ on an arbitrary set Ω.

Definition 2.6. An directed action graph of Ω with respect to Σ, denoted A+(Ω,Σ) is defined
by the following.

V(A+(Ω,Σ)) = Ω

E(A+(Ω,Σ)) = (Σ× Ω)/ ∼
(t, h)(e) = (γi · ω, ω) for e ∈ E(A+(Ω,Σ))

where ∼ is an equivalence relation on Σ×Ω given by the following for all γi ∈ Σ and ω ∈ Ω:

(γi, ω) ∼ (γi, ω) and

γi · ω 6= ω ⇒ (γi, ω) ∼ (γ−1
i , γi · ω)

Let Θ ≤ Γ be a subgroup of Γ.

Definition 2.7. The Schreier graph of Γ/Θ with respect to Σ is the directed action graph
A+(Γ/Θ,Σ) where Γ acts on Γ/Θ by g · (xΘ) = (gx)Θ for all g ∈ Γ, xΘ ∈ Γ/Θ.

Definition 2.8. The relative Cayley graph of Γ of Γ/Θ with respect to Θ is the Schreier graph
of Γ/Θ with respect to Σ when Θ � Γ is normal. This is denoted by C+(Γ/Θ,Σ).

Lemma 2.9. For any ω ∈ Ω, there is a natural identification between Σ and the set of edges
α ∈ A+(Ω,Σ) with either t(α) or h(α) equal to ω. Specifically, A+(Ω,Σ) is k-regular.

Proof.

Fix ω ∈ Ω. Denote G = A+(Ω,Σ). Define Eω ⊂ E(G) by the following.

Eω = E(G;→ ω) ∪ E(G;ω→)

Define a map ϕ : Σ → Eω by ϕ : γi 7→ [(γi, ω)] for all γi ∈ Σ where [(γi, ω)] denotes the
equivalence class of (γi, ω) with respect to ∼ as in the definition of the action graph.

Claim: ϕ is a bijection.

First, ϕ is injective since if ϕ(γi) = ϕ(γj), then (γi, ω) ∼ (γj, ω). By definition of this
equivalence relation, either γi = γj or γiω 6= ω implies that (γj, ω) = (γ−1

i , γiω) but this
is a contradiction since it implies that ω = γiω. Hence, it follows that γi = γj. i.e.,
ϕ(γi) = ϕ(γj)⇒ γi = γj for all γi, γj ∈ Σ, so ϕ is injective.

Also, ϕ is surjective. Let α ∈ Eω be given by α = [(γj, y)] for some γj ∈ Σ, y ∈ Ω. Since
α ∈ Eω, by definition, then either t(α) = ω or h(α) = ω.

If h(α) = ω, then by α = [(γj, y)], this implies that ω = y, thus α = ϕ(γj).

If t(α) = ω, then by the definition of the tail-head map of the action graph, ω = γjy 6= y
and the equivalence relation ∼ implies the following.

(γj, y) ∼ (γ−1
j , γj · y)
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⇒ (γj, y) ∼ (γ−1
j , γj · y) = (γ−1

j , ω)

⇒ α = ϕ(γ−1
j )

In both cases, there exists some γ ∈ Σ such that ϕ(γ) = α. Thus, ϕ is surjective. Hence,
for each ω ∈ Ω, there exists a bijection between Σ and Eω, and thus G = A+(Ω,Σ) is
|Σ| = k-regular. �
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3. Expanders: General

Let G = (V,E,E
(t,h)−→ V2) be a finite symmetric k-regular graph  |V | = n

Let X ⊂ V and X = V \X.

Definition 3.1. Recall the following definition.

E(G;X,X) =
∐

x∈X
∐

y∈X E(G;x, y) where E(G; x, y) is the set of edges from vertex x to
vertex y.

– i.e., E(G;x, y) = {e ∈ E | t(e) = x, h(e) = y}.

Definition 3.2. The expansion constant h(G) of a finite graph is

h(G) = min
X(V,X 6=∅

{
|E(G;X,X)|
min{|X|, |X|}

}
⇒ h(G) = min

X(V,X 6=∅

{
|E(G;X,X)|

|X|

∣∣∣∣ |X| ≤ n

2

}
One could ask why the former implies the latter and why we only look at subsets of size less
than or equal to n

2
. Suppose that X ⊂ V and |X| > n

2
. Then, clearly |X| ≤ n

2
and hence

min{|X|, |X|} = |X|. i.e., “Y ” = X ⊂ V is already considered in the above definition of the
expansion constant h(G) since |Y | ≤ n

2
. So it makes sense to only consider the subsets of V

that have size less than n
2
, since all others are accounted for by taking the minimum of the

sizes of a subset and its respective complement.

Corollary 3.3. h(G) > 0⇔ G is connected.

Let {G}i∈I be a family of finite symmetric graphs.

Definition 3.4. {G}i∈I is a weak (one-sided) expander family if the following conditions hold.

(1) |Vi | → ∞
– i.e., for all n ≥ 1, there exist only finitely many i ∈ I such that |Vi | ≤ n.

(2) lim infi∈I h(Gi) ≥ h for some h > 0.

(3) max{deg(v) | i ∈ I and v ∈ V(Gi)} ≤ k for some k > 0.

Let {G}i∈I be a family of finite, symmetric, and k-regular graphs where |V(Gi)| = ni for
each i ∈ I.

Definition 3.5. {G}i∈I an absolute expander family (or strong expander) if the following
conditions hold.
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(1) |Vi | → ∞

(2) lim supi∈I max{|α2(Gi)|, |αni(Gi)} < k
where spec(A(Gi)) = {α1(Gi) ≥ α2(Gi) ≥ · · · ≥ αni(Gi)} is the set of eigenvalues

of the adjacency matrix of the graph Gi in decreasing order.
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4. Cayley graphs as expanders

Let Γ be a group, Σ = (γ1, γ2, . . . , γk) ∈ Γk be an arbitrary k-tuple of group elements as
before, and let G = Cay(Γ,Σ) be the Cayley graph on (Γ,Σ).

Definition 4.1. The distance between any two vertices x, y ∈ V is the minimum length of
a path between x and y, denoted distG(x, y); if no path exists between x and y, define
distG(x, y) =∞. If distG(x, y) 6=∞, then

distG(x, y) = min
ϕ∈Homτ (Path+

d ,G)
{d | ϕ(0) = x, ϕ(d) = y}

– For any x, y ∈ V, distG(x, y) ∈ {0, 1, . . . } ∪∞.

Remark 4.2. dist is a metric on V and thus (V(G), distG) is a metric space.

Remark 4.3. The definitions of distance and diameter of graphs holds for any finite graph,
not just Cayley graphs.

Definition 4.4. The diameter of G is the largest distance between any two vertices.

diam(G) =

{
supx,y∈V distG(x, y) <∞ if G is connected

∞ if G is disconnected

Remark 4.5. Recall the following definition of “big-oh notation”: Let f, g : N→ R+. f(n) =
O(g(n)) iff there exist constants N, c > 0 such that f(n) ≤ cg(n) for all n > N . i.e., at some
point, f is bounded above by a constant times g.

Let {Gn}n∈N be a sequence of finite graphs.

Definition 4.6. The sequence of finite graphs {Gn}n∈N has logarithmic diameter iff

diam(Gn) = O(log |Gn |)

Let {Γn}n∈N be a sequence of finite groups.

Definition 4.7. {Γn}n∈N has logarithmic diameter if there exists some d ∈ Z>0 such that
there exists a sequence {Φn}n∈N where for each n, Φn ⊂ Γn is a symmetric subset with
|Φn| = d, so that the sequence of Cayley graphs (Cay(Γn,Φn))n∈N has logarithmic diameter.

Let Γ be a group, Σ = (γ1, γ2, . . . , γk) ∈ Γk be an arbitrary k-tuple of group elements as
before.

Definition 4.8. A word of length n in Σ is an element of the direct product Σn. If w =
(w1, . . . , wn) ∈ Σn, then w evaluates to g (or g can be expressed as w) iff g = w1 · w2 · · ·wn.
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Example 4.9. Let Γ = Z and Σ = {−1, 1, 2, 5}.

Then, w = (1, 2, 1) is a word of length 3 in Σ and w′ = (2, 2) is a word of length 2. Since
4 = 1 + 2 + 1 = 2 + 2, both w and w′ evaluate to 4. That is, an element of the group can be
expressed non-uniquely as a word in Σ.

Let g ∈ Γ be such that it can be expressed as a word in Σ.

Definition 4.10. The word norm of g in Σ is the minimal length of any word in Σ which
evaluates to g.

– Convention  Word of length 0 evaluates to the identity.

Using the assumptions at the beginning of this section: Γ is a group, Σ ⊂ Γ be an arbitrary
k-tuple of group elements, and G = Cay(Γ,Σ).

Proposition 4.11.

(1) G is connected if and only if every element of Γ can be expressed as a word in Σ.

(2) If a, b ∈ Γ and there exists a path from a to b, then distG(a, b) = word norm of a−1b ∈
Σ.

(3) diam(G) equals the maximum of the word norms in Σ of elements of Γ.

Proof.

(1) This is exactly equivalent to saying G is connected ⇔ Σ generates Γ, as shown in
Proposition 1.13

(2) Suppose there exists a path of length d from a to b, i.e., Homτ (Path+
d ,G) 6= ∅. Let

(g0, g1, . . . , gd) denote the vertices of this path in G. That is, a = g0, b = gd.
Define

γj = g−1
j−1gj for all j = 1, 2, . . . , d

By definition of of the (g0, . . . , gd) path and the Cayley graph G on (Γ,Σ), then
γj ∈ Σ for all j and there exists an edge in the Cayley graph from gj−1 to gj by
definition. Then, the following holds by construction.

γ1γ2 · · · γd = g−1
0 g1g

−1
1 g2 · · · g−1

d−1gd

γ1γ2 · · · γd = g−1
0 gd = a−1b

Thus, (γ1, γ2, . . . , γd) is a word of length d in Σ that evaluates to a−1b.

On the other hand, every word of length d in Σ that evaluates to a−1b can be
associated with a path of length d in G from a to b. This is done by taking each
element of the word as a vertex in the path. Now, distG(a, b) is the minimal length of
all possible paths from a to b, which by the given correspondence, equals the minimal
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length of all words in Σ that evaluate to a−1b. By definition, this is equivalent to the
word norm of a−1b in Σ.

(3) If g ∈ Γ, then by part (2) of this proposition, distG(e, g) is the word norm of g. By
definition of diam(G) as a supremum, then

diam(G) ≥ max
g∈Γ

distG(e, g)

So diam(G) is greater than the maximum of the word norms of all g ∈ Γ. By (2),
every distance is a word norm, and hence diam(G) attains the maximum and is equal
to the maximum of the word norms in Σ of elements of Γ.

�

Remark 4.12. Part (3) of the above proposition asserts that the word norm of a group
element g ∈ Γ equals the distance from the identity element e to g in G = Cay(Γ,Σ).

Motivation for constructing expanders : What assumptions are needed to conclude that a
family of Cayley graphs is an expander?

Theorem 1. Expansion in Subgroups of SL2(Z)

Let Σ ⊂ SL2(Z) be any finite subset, Θ = 〈Σ〉 be the subgroup generated by Σ, and let p be
a prime. Define

Gp = Cay(SL2(Fp),Σ)

as the Cayley action graph of the finite quotient group SL2(Fp) with respect to the reduction
modulo p of the set Σ.

Then
{Gp}p≥p0 is expander ⇔ G is connected for all p ≥ p0 and some p0

Corollary 4.13. Let k ≥ 1, k ∈ Z. Define the subset Σ ⊂ SL2(Z) as follows.

Σ =

{(
1 ±k
0 1

)
,

(
1 0
±k 1

)}
⊂ SL2(Z)

For a prime p, let Σp := the image of Σ modulo p.

If p - k, then Cay(SL2(Fp),Σp) is connected, so (Cay(SL2(Fp),Σp))p-k is expander.

13



References
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