Lecture 4: Overview of path homology of digraphs

Mohabat

March 25, 2022

Contents

1	Curvature		1
	1.1	Examples of computation of curvature	1
		1.1.1 Examples	2
	1.2	Digraphs of constant curvature	3
		1.2.1 Example	4
	1.3	Some problems	4

1 Curvature

1.1 Examples of computation of curvature

- in \mathcal{R}_p , fix the natural inner product
- using the orthonormal basis $\{e_i\}$ in $\Omega_0 := \langle e_i \rangle_{i \in V}$, we obtain

$$[x, \Omega_0] = \sum_i [x, e_i] = 1$$

• using the orthonormal basis $\{e_{ij}\}$ with $i \to j$ in $\Omega_1 := \langle e_{ij} \rangle_{i \to j}$, we obtain

$$[x, \Omega_1] = \sum_{i \to j} [x, e_{ij}] = \deg(x)$$

• therefore,

$$K_x^{(1)} = 1 - \frac{\deg(x)}{2}$$

and for any $N \ge 1$, we have:

$$K_x^{(N)} = 1 - \frac{\deg(x)}{2} + \sum_{p=2}^N \frac{(-1)^p}{p+1} [x, \Omega_p]$$

- By proposition 1.2, in the absence of double arrows, the space Ω₂ always has a basis of triangles and squares
 - but this basis is not necessarily orthogonal
- for a triangle $e_{abc} \in \Omega_2$, we have

$$[x, e_{abc}] = \begin{cases} 1 & x \in \{a, b, c\} \\ 0 & \text{else} \end{cases}$$

• for a square $e_{abc} - e_{ab'c} \in \Omega_2$,

$$[x, e_{abc} - e_{ab'c}] = \begin{cases} 2 & x \in \{a, c\} \\ 1 & x \in \{b, b'\} \\ 0 & \text{else} \end{cases}$$

- in particular, if *G* has no squares, then Ω_2 has a basis $\{\omega_k\}$ that consists of all triangles in *G*
 - this basis is orthonormal and

$$[x, \Omega_2] = \sum_k [x, \omega_k] = \deg_{\triangle}(x) := \#$$
 triangles containing x

* follows that:

$$K_x^{(2)} = 1 - \frac{\deg(x)}{2} + \frac{\deg_{\Delta}(x)}{3}$$

and this matches (4.2)

1.1.1 Examples

- 1. *G*: a line digraph
- 2. *G*: a cyclic digraph
- 3. *G*: a dodecahedron (with any orientation of edges)
- 4. *G*: a triangle
- 5. *G*: a square
- 6. *G*: an *n*-simplex
- 7. G: a bipyramid
- 8. *G*: a 3-cube
- 9. G: an octahedron

1.2 Digraphs of constant curvature

• a graph is **regular** if deg(*x*) is constant

Definition 1.1. A digraph *G* is **strongly regular** if $x \mapsto [x, \Omega_p]$ is constant for any *p*.

In particular, *G* is **regular** because $deg(x) = [x, \Omega_1]$

• in the strongly regular case, the function $x \mapsto K_x$ is also constant and we set

$$K(G) := K_x = \frac{\chi(G)}{|V|}$$

- G: a digraph
- $m \in \mathbb{N}$
- construct a new digraph by adding *m* new vertices $\{y_1, \ldots, y_m\}$ and for all $x \in X$, all arrows $x \to y_i$ to the graph *G*
 - this digraph is the *m*-suspension of G, denoted sus_{*m*}G

Theorem 1.2. (4.4)

Let G be a strongly regular digraph such that for some $k, m \in \mathbb{N}$ *and any* $p \ge 0$ *,*

$$\dim \Omega_p(G) = \binom{k}{p+1} m^{p+1} \qquad (binom(k,m))$$

Then, $sus_m G$ is also strongly regular, and for all $p \ge 0$,

$$\dim \Omega_p(sus_m G) = \binom{k+1}{p+1} m^{p+1} \qquad (binom(k+1,m))$$

• for *G* in the above theorem, we have

$$\chi(G) = \sum_{p \ge 0} (-1)^p \dim \Omega_p$$

= $\sum_{p=0}^{k-1} (-1)^p {k \choose p+1} m^{p+1}$
= $-\sum_{j=1}^k (-1)^j {k \choose j} m^j$
= $1 - (1 - m)^k$

• it follows that:

$$K(G) = \frac{\chi(G)}{|V|}$$
$$= \frac{\chi(G)}{\dim \Omega_0}$$
$$= \frac{1 - (1 - m)^k}{km}$$

• of course, the same formula is true for $K(sus_m G)$ with k replaced by k + 1:

$$K(sus_m G) = \frac{1 - (1 - m)^{k+1}}{(k+1)m}$$

1.2.1 Example

• a triangle

1.3 Some problems

<u>Problem 4.5</u>: Compare this notion of curvature with other definitions of the curvature of graphs.

Problem 4.6: Compute the curvature of the icosahedron.

Problem 4.7: Is it true that for the icosahedron, $|\Omega_2| = 25$ for any numbering of the vertices?

Problem 4.8: Let a digraph *G* be determined by a triangulation of S^2 (section 2.3). Assume that deg(*x*) \leq 6 for all vertices *x* \in *G*. Is it true that $K_x(G) \geq 0$?

Problem 4.9: What can be said about the curvature of a triangulation of \mathbb{T}^2 ?

Problem 4.10: What can be said about the curvature of random digraphs?

<u>Problem 4.11</u>: Let S be a simplicial complex and G_S its Hasse diagram (section 2.2). Is there any relationship between $K_x(G_S)$ and properties of S? For example, we have

$$K_{\text{total}}(G_{\mathcal{S}}) = \chi(G_{\mathcal{S}}) = \chi_{\text{simp}}(\mathcal{S})$$

Can one give an explicit formula for computing $K_{\sigma}(G_{S})$ for any simplex $\sigma \in S$?