Lecture 3: Overview of path homology of digraphs
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1 Homological dimension

¢ in this section, K := F,
Definition 1.1. The homological dimension of a digraph G is
dimy, G :=sup{k : |Hx(G)| > 0}

1.1 Some examples

1. G: apolygon (i.e., a cyclic digraph)
¢ if G is neither a triangle nor square, then |H;| = 1 and |H,| = 0 for p > 2 so that

dim, G =1
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* if G is either a triangle or a square, then |H,| = 0 for p > 1 and hence

dimh G=0

v

2. Let G be the octahedron here:

D
v

° |H2| = 1
* |[Hy|=0forp >3
e thus, dim; G =2
3. there are finite digraphs with dimy, G = co as the one here:

¢ constructed by Gabor Lippner and Paul Horn in 2012

1.2 Random digraphs

* we are interested in the homological dimension of a randomly generated digraph G
e fix a finite set of vertices {1,2,...,V}

e fixp,g>0withp+g<1



e gset of arrows in G is defined as:

— for any 2 vertices a < b there is:

* an arrow a — b with probability p;
* an arrow b — a with probability g; and
* no arrow with probability 1 —p — g

* the so-constructed probability measure on digraphs will be denoted P = P, ; v
¢ randomly generated digraph withp =4 =0.37,V =15,E = 86

— for this digraph, dim, G = 6
* setri=p+g

¢ the number E of arrows is random, and it is easy to compute:
E(E) = %V(V ~1)
Var(E) = %r(l -V -1
Definition 1.2. The degree of a digraph is the average outgoing degree of the vertices:

E
D—degG._v

. : _ 86 -
o for example: for the above digraph, D = $¢ ~ 5.7

¢ for random digraphs, it follows from the above expected value and variance computations,
that

E(D):%(V—l)
V-1

Var(D) = %41 _ 1)

¢ moreover, applying the CLT to the sum of indicators of arrows, we obtain:

D-L(V-1
= # i>N01rma1(0,1) asV — oo

Dnorm -
1/%r(l - r)%

Proposition 1.3. If p + g > 0, then

1}1—{20 Pp,q,v(G is connected) = 1

That is,
Pp,q,V(ﬁO(G) =1)—>1asV — o0



1.3

1.4

Homological dimension and degree

turns out that dimj, G for random digraphs is closely related to the degree D = %
in > 1,000 samples of randomly generated digraphs, we have observed the following dichotomy:

Observation: With high probability, either dim;, G = 0 or dimj, <D (i.e., the dimen-
sion is 0 or asymptotic to the degree D).

consider random variables
Q= dim;, G
D

Q4+ :=(Q | Q > 0) (a conditioned RV)

assume thatp = g € (0, %)

Conjecture: There exist positive limits
ulp) = ‘}1_1}'010 Eppv(Q+) and
TZ(P) = ‘}l_rgo Varp,p,V(Q+) = Vh—rgo Ep,p,V(Qi) - /J(P)z

Besides, we have
u(p) > 3t(p)

plot of empirical functions u(p) and 7(p) computed using the averages of Q. and Q% among
all available samples

Conjecture 3.3: We have Q, 2, %Normah(y,’cz) as V. — oo where p := u(p) and
T:=1(p).
That is, for any x > 0,

1

21T

(y —u)z) dy

exp ( o2

. 1 [
<x)=—
Hm Eppv(Qe < 2) = 7 /0

where Z is a normalizing factor.

as one sees in the plot, P(0.4 < Q; <1)= 0.9, i.e,

P(0.4D < dimy(G) < D | dimy(G) > 0) = 0.9

Homologically trivial and spherical digraphs

Definition 1.4. A digraph G is homologically trivial if dim; G = 0.

ie,Br(G)=0forallk > 1



Conjecture 3.4: The following limit exists and is positive:

T(p) = ‘}1_{110 Pppv (G is homologically trivial)
Consequently,
D = Q — T(p)oo + 7= T(p))NormaLr([u, t°)asV — o

Definition 1.5. A digraph G is homologically spherical of dimension 7 if

1.5

ifk=0,n
else

Br(G) = {(1)

in this case, dim; G = n

notice that any homologically trivial digraph is also spherical of dimension 0.

Conjecture 3.5: The following limit exists and is positive:

S(p) = ‘}im Pypv (G is homologically spherical)

of course, S(p) > T(p)

plot of empirical functions S(p) (resp. T(p)) computed as fractions of all homologically
spherical (resp. trivial) digraphs among all available samples

— see that for p = 0.5, a random digraph is homologically spherical with probability nearly 1,
and is homologically trivial with probability close to 0.9

Computational limitations

for computation of homology groups and Betti numbers of digraphs we use the aforementioned
program by Chao Chen

successively computes Hi(G) and Bi(G) for k = 1,2, ... until the memory of the computer
allows

N,: the largest rank of actually computable Betti numbers for a digraph G

for randomly generated digraphs with p = g, we have found the following empirical formula
for N,:

b
ﬂll’l (1 + V)
InD

where D = £ and 4, b are constants to be found experimentally depending on the computer

Ne:

- for a 168GB i7 laptop, we have a = 3,b = 400

5



¢ if D > 3, then usually
|Na - Ne| S 1

* since we have: .
E< EV(V -1)

it follows that D < %(V —1)and V > 2D. Therefore,

b
ﬂln(1+ﬁ)

N, <
¢ = InD

— with some data, the condition above implies that D < 6

* hence, if for a randomly generated digraph, D > 6, then the computation of dimj;, G
becomes unreliable

¢ randomly generated digraph with V =30,E =267,D =8.9,p =4 =0.3

— we have that N, = 4 while N, = 3 and the actually computed Betti numbers are 1, 0, 0, 0.

- since D = 8.9 > N,, no reliable conclusion about dimj, G can be made

e for such digraphs, we need either to use a more powerful computer or to improve the algorithm
of the program

Problem 3.6: Compute S for all k < 9 for the above digraph.

2 Curvature of digraphs

2.1 Motivation
¢ I': a finite planar graph
¢ there is the following classical notion of curvature

Definition 2.1. The combinatorial curvature K, at any vertex x of I':

_ _deg(x) 1
K, :=1 > +;deg(f) (4.1)

where the sum is taken over all faces f containing x and deg(f) denotes the number of vertices of f.

¢ e.g., if all faces are triangles, then we obtain:

~ deg(x) N deg, (x)

K,=1
* 2 3

where deg, (x) is the number of triangles having x as a vertex.



2.2

in general: denoting by E, V, F as the number of edges (resp. vertices, faces) of I' and observing
that:

Z deg(x) = 2E and
1 1
2.0 Gex " T

we obtain:
Z Ky, =V —-E+F=yx ie.,the Euler characteristic
X

we try to realize this idea on digraphs: to distribute the Euler characteristic over all vertices,
and hence, to obtain an analogue of Gauss curvature that satisfies Gauss-Bonnet.

Curvature operator

G = (V, E): finite digraph
K=R
Goal: To generalize (4.1) to arbitrary digraphs, so that the faces in (4.1) should be

replaced by the elements of a basis in Q, — the faces should be replaced by the elements
of a basis in (), but the result should be independent of the choice of a basis.

fixp >0

any function f : V' — R on the vertices induces a linear operator

Treiy..i, == (f(io) + f(i1) + -+ + f(ip))ei,...,
e.g., for a constant function f = 1 on V, we have Theiy...i, = (p+ 1)61‘0.._1‘,, and hence

Thow=(p +1)w forany w € R, (4.3)

if f = 1, where x € V, then

Th,eiy..i, = mei, i, (4.4)
where m is the number of occurrences of x in o, ..., ip
in R, fix an inner product (-, -)

- e.g., this can be a natural inner product when all regular elementary paths Ci...i, form
an orthonormal basis in R,



e letIl, : Ry — Q be the orthogonal projection onto (),
* considering Tf as an operator from €2, to R, we obtain the following operator in €2,,:
Tjﬁ =11, 0 Tr : QQy — Q)
Definition 2.2. The incidence of f and Q, is
[f, Q] = traceT;
Definition 2.3. For any w = }; w0--ip €ig...i, € Qp, the incidence of f and w is:

[f wl:=(Tfo, 0)

Lemma 2.4. For any orthogonal basis {wy} in Q,, we have:

o=

2
ol

Proof. It suffices to prove the statement for an orthonormal basis (i.e., ||wk|| = 1 for all k).

By the definition of the trace,
traceTJﬁ = ;(T;a)k, wy)

Forany w € Qp, we have
(Tfw, 0) = (I, Trw, w)
= (Tro, M)
= (Trw, w)
~ (Tf’a),a)) =[f, w]
so that the statement follows.

Definition 2.5. For any N € N, the curvature operator KN) : RV — R of order N is

N (_
KN(f) = )
p=0

1)?
Tl )

e if Q, = {0} for all p > N, we write K;N) = Ky

e for f = 1, for x € V, we write
[x,Qp] :=[1,,Q,] and

[x, w] =1y, w]

* if {w} is an orthogonal basis of (), then by the preceding lemma, we have:

[X, Qp] — Z [X, CL)k]

2
4 el




e if the inner product is natural so that {eio,,,ip} is an orthonormal basis, then by (4.4), we have:

[x, €i0..,i,,] = m where m is the number of occurrences of x in iy, ..., ip

* as an example:

[, eapcal =2
[b/ eabca] =1
[d; eubcu] =0

¢ in this case, for w = ), a)lo'“li’eio__ip, we have

[x, a)] — Z (wio...ip)Z[x, eio...ip]

io...l'pEV

Definition 2.6. Let N € N. The curvature of order N at a vertex x is

KM = kN1,

N
N) _ Z (=1)P
Kx - pzo p + 1 [xr QP]

Proposition 2.7. Gauss-Bonnet.

For any choice of the inner product in R, and for any N, we have

N
N N i
DK =K = ™ = ) dimy,
xeV p=0

Proof. Since ).y 1 = 1, we obtain that

N) _ (N)
Ktotal - Z K

xeV
= KV,
xeV
= kN
N
1,Q,]
N NV P['—p
e K’ro’cal PZ(:)( 1) p +1
On the other hand, by (4.3),
[]1/ C()] = (Tﬂw/ Cl))
=(p+Dlwl?



If {wy} is an orthogonal basis in 2, then by (4.5),

[1, wi]
] = Z AL

= (p +1)dim €,

This implies:

kN = Z( 1)P dim Q,,

total
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