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1 Homological dimension

• in this section, K := F2

Definition 1.1. The homological dimension of a digraph 𝐺 is

dimℎ 𝐺 := sup{𝑘 : |𝐻𝑘(𝐺)| > 0}

1.1 Some examples

1. 𝐺: a polygon (i.e., a cyclic digraph)

• if 𝐺 is neither a triangle nor square, then |𝐻1 | = 1 and |𝐻𝑝 | = 0 for 𝑝 ≥ 2 so that

dimℎ 𝐺 = 1
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• if 𝐺 is either a triangle or a square, then |𝐻𝑝 | = 0 for 𝑝 ≥ 1 and hence

dimℎ 𝐺 = 0

2. Let 𝐺 be the octahedron here:

• |𝐻2 | = 1
• |𝐻𝑝 | = 0 for 𝑝 ≥ 3
• thus, dimℎ 𝐺 = 2

3. there are finite digraphs with dimℎ 𝐺 = ∞ as the one here:

• constructed by Gabor Lippner and Paul Horn in 2012

1.2 Random digraphs

• we are interested in the homological dimension of a randomly generated digraph 𝐺

• fix a finite set of vertices {1, 2, . . . , 𝑉}

• fix 𝑝, 𝑞 > 0 with 𝑝 + 𝑞 ≤ 1
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• set of arrows in 𝐺 is defined as:

– for any 2 vertices 𝑎 < 𝑏 there is:
* an arrow 𝑎 → 𝑏 with probability 𝑝;
* an arrow 𝑏 → 𝑎 with probability 𝑞; and
* no arrow with probability 1 − 𝑝 − 𝑞

• the so-constructed probability measure on digraphs will be denoted P = P𝑝,𝑞,𝑉

• randomly generated digraph with 𝑝 = 𝑞 = 0.37, 𝑉 = 15, 𝐸 = 86

– for this digraph, dimℎ 𝐺 = 6

• set 𝑟 := 𝑝 + 𝑞

• the number 𝐸 of arrows is random, and it is easy to compute:

E(𝐸) = 𝑟

2𝑉(𝑉 − 1)

Var(𝐸) = 1
2 𝑟(1 − 𝑟)𝑉(𝑉 − 1)

Definition 1.2. The degree of a digraph is the average outgoing degree of the vertices:

𝐷 = deg𝐺 := 𝐸

𝑉

• for example: for the above digraph, 𝐷 = 86
15 ≈ 5.7

• for random digraphs, it follows from the above expected value and variance computations,
that

E(𝐷) = 𝑟

2 (𝑉 − 1)

Var(𝐷) = 1
2 𝑟(1 − 𝑟)𝑉 − 1

𝑉

• moreover, applying the CLT to the sum of indicators of arrows, we obtain:

𝐷norm :=
𝐷 − 𝑟

2 (𝑉 − 1)√
1
2 𝑟(1 − 𝑟)𝑉−1

𝑉

D−→ Normal(0, 1) as 𝑉 → ∞

Proposition 1.3. If 𝑝 + 𝑞 > 0, then

lim
𝑉→∞

P𝑝,𝑞,𝑉 (𝐺 is connected) = 1

That is,
P𝑝,𝑞,𝑉 (𝛽0(𝐺) = 1) → 1 as 𝑉 → ∞
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1.3 Homological dimension and degree

• turns out that dimℎ 𝐺 for random digraphs is closely related to the degree 𝐷 = 𝐸
𝑉

• in > 1,000 samples of randomly generated digraphs, we have observed the following dichotomy:

Observation: With high probability, either dimℎ 𝐺 = 0 or dimℎ ≍𝐷 (i.e., the dimen-
sion is 0 or asymptotic to the degree 𝐷).

• consider random variables
𝑄 := dimℎ 𝐺

𝐷

𝑄+ := (𝑄 | 𝑄 > 0) (a conditioned RV)

• assume that 𝑝 = 𝑞 ∈
(
0, 1

2
)

Conjecture: There exist positive limits

𝜇(𝑝) = lim
𝑉→∞

E𝑝,𝑝,𝑉 (𝑄+) and

𝜏2(𝑝) = lim
𝑉→∞

Var𝑝,𝑝,𝑉 (𝑄+) = lim
𝑉→∞

E𝑝,𝑝,𝑉 (𝑄2
+) − 𝜇(𝑝)2

Besides, we have
𝜇(𝑝) > 3𝜏(𝑝)

• plot of empirical functions 𝜇(𝑝) and 𝜏(𝑝) computed using the averages of 𝑄+ and 𝑄2
+ among

all available samples

Conjecture 3.3: We have 𝑄+
D−→ 1

𝑍Normal+(𝜇, 𝜏2) as 𝑉 → ∞ where 𝜇 := 𝜇(𝑝) and
𝜏 := 𝜏(𝑝).
That is, for any 𝑥 ≥ 0,

lim
𝑉→∞

P𝑝,𝑝,𝑉 (𝑄+ ≤ 𝑥) = 1
𝑍

∫ 𝑥

0

1√
2𝜋𝜏

exp
(
−
(𝑦 − 𝜇)2

2𝜏2

)
𝑑𝑦

where 𝑍 is a normalizing factor.

• as one sees in the plot, P(0.4 ≤ 𝑄+ ≤ 1) ≈ 0.9, i.e.,

P(0.4𝐷 ≤ dimℎ(𝐺) ≤ 𝐷 | dimℎ(𝐺) > 0) ≈ 0.9

1.4 Homologically trivial and spherical digraphs

Definition 1.4. A digraph 𝐺 is homologically trivial if dimℎ 𝐺 = 0.

• i.e., 𝛽𝑘(𝐺) = 0 for all 𝑘 ≥ 1
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Conjecture 3.4: The following limit exists and is positive:

𝑇(𝑝) = lim
𝑉→∞

P𝑝,𝑝,𝑉 (𝐺 is homologically trivial)

Consequently,

dimℎ 𝐺

𝐷
= 𝑄

D−→ 𝑇(𝑝)𝛿0 +
1

𝑍(1 − 𝑇(𝑝))Normal+(𝜇, 𝜏2) as 𝑉 → ∞

Definition 1.5. A digraph 𝐺 is homologically spherical of dimension 𝑛 if

𝛽𝑘(𝐺) =
{

1 if 𝑘 = 0, 𝑛
0 else

• in this case, dimℎ 𝐺 = 𝑛

• notice that any homologically trivial digraph is also spherical of dimension 0.

Conjecture 3.5: The following limit exists and is positive:

𝑆(𝑝) = lim
𝑉→∞

P𝑝,𝑝,𝑉 (𝐺 is homologically spherical)

• of course, 𝑆(𝑝) ≥ 𝑇(𝑝)

• plot of empirical functions 𝑆(𝑝) (resp. 𝑇(𝑝)) computed as fractions of all homologically
spherical (resp. trivial) digraphs among all available samples

– see that for 𝑝 ≈ 0.5, a random digraph is homologically spherical with probability nearly 1,
and is homologically trivial with probability close to 0.9

1.5 Computational limitations

• for computation of homology groups and Betti numbers of digraphs we use the aforementioned
program by Chao Chen

• successively computes 𝐻𝑘(𝐺) and 𝛽𝑘(𝐺) for 𝑘 = 1, 2, . . . until the memory of the computer
allows

• 𝑁𝑎 : the largest rank of actually computable Betti numbers for a digraph 𝐺

• for randomly generated digraphs with 𝑝 = 𝑞, we have found the following empirical formula
for 𝑁𝑎 :

𝑁𝑒 =

𝑎 ln
(
1 + 𝑏

𝑉

)
ln𝐷

where 𝐷 = 𝐸
𝑉 and 𝑎, 𝑏 are constants to be found experimentally depending on the computer

– for a 168GB i7 laptop, we have 𝑎 = 3, 𝑏 = 400
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• if 𝐷 > 3, then usually
|𝑁𝑎 − 𝑁𝑒 | ≤ 1

• since we have:
𝐸 ≤ 1

2𝑉(𝑉 − 1)

it follows that 𝐷 ≤ 1
2 (𝑉 − 1) and 𝑉 > 2𝐷. Therefore,

𝑁𝑒 ≤
𝑎 ln

(
1 + 𝑏

2𝐷

)
ln𝐷

– with some data, the condition above implies that 𝐷 ≤ 6
* hence, if for a randomly generated digraph, 𝐷 > 6, then the computation of dimℎ 𝐺

becomes unreliable

• randomly generated digraph with 𝑉 = 30, 𝐸 = 267, 𝐷 = 8.9, 𝑝 = 𝑞 = 0.3

– we have that 𝑁𝑒 = 4 while 𝑁𝑎 = 3 and the actually computed Betti numbers are 1, 0, 0, 0.
– since 𝐷 = 8.9 ≫ 𝑁𝑎 , no reliable conclusion about dimℎ 𝐺 can be made

• for such digraphs, we need either to use a more powerful computer or to improve the algorithm
of the program

Problem 3.6: Compute 𝛽𝑘 for all 𝑘 ≤ 9 for the above digraph.

2 Curvature of digraphs

2.1 Motivation

• Γ: a finite planar graph

• there is the following classical notion of curvature

Definition 2.1. The combinatorial curvature 𝐾𝑥 at any vertex 𝑥 of Γ:

𝐾𝑥 := 1 −
deg(𝑥)

2 +
∑
𝑓 ∋𝑥

1
deg( 𝑓 ) (4.1)

where the sum is taken over all faces 𝑓 containing 𝑥 and deg( 𝑓 ) denotes the number of vertices of 𝑓 .

• e.g., if all faces are triangles, then we obtain:

𝐾𝑥 = 1 −
deg(𝑥)

2 +
deg△(𝑥)

3

where deg△(𝑥) is the number of triangles having 𝑥 as a vertex.
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• in general: denoting by 𝐸,𝑉, 𝐹 as the number of edges (resp. vertices, faces) of Γ and observing
that: ∑

𝑥

deg(𝑥) = 2𝐸 and∑
𝑥

∑
𝑓 ∋𝑥

1
deg( 𝑓 ) =

∑
𝑓

∑
𝑥∈ 𝑓

1
deg( 𝑓 ) = 𝐹

we obtain: ∑
𝑥

𝐾𝑥 = 𝑉 − 𝐸 + 𝐹 = 𝜒 i.e., the Euler characteristic

• we try to realize this idea on digraphs: to distribute the Euler characteristic over all vertices,
and hence, to obtain an analogue of Gauss curvature that satisfies Gauss-Bonnet.

2.2 Curvature operator

• 𝐺 = (𝑉, 𝐸): finite digraph

• K = R

Goal: To generalize (4.1) to arbitrary digraphs, so that the faces in (4.1) should be
replaced by the elements of a basis in Ω𝑝 – the faces should be replaced by the elements
of a basis in Ω𝑝 , but the result should be independent of the choice of a basis.

• fix 𝑝 ≥ 0

• any function 𝑓 : 𝑉 → R on the vertices induces a linear operator

𝑇𝑓 : R𝑝 → R𝑝

𝑇𝑓 𝑒𝑖0 ...𝑖𝑝 := ( 𝑓 (𝑖0) + 𝑓 (𝑖1) + · · · + 𝑓 (𝑖𝑝))𝑒𝑖0 ...𝑖𝑝

• e.g., for a constant function 𝑓 = 1 on 𝑉 , we have 𝑇1𝑒𝑖0 ...𝑖𝑝 = (𝑝 + 1)𝑒𝑖0 ...𝑖𝑝 and hence

𝑇1𝜔 = (𝑝 + 1)𝜔 for any 𝜔 ∈ R𝑝 (4.3)

• if 𝑓 = 1𝑥 where 𝑥 ∈ 𝑉 , then

𝑇1𝑥 𝑒𝑖0 ...𝑖𝑝 = 𝑚𝑒𝑖0 ...𝑖𝑝 (4.4)

where 𝑚 is the number of occurrences of 𝑥 in 𝑖0 , . . . , 𝑖𝑝

• in R𝑝 , fix an inner product (·, ·)

– e.g., this can be a natural inner product when all regular elementary paths 𝑒𝑖0 ...𝑖𝑝 form
an orthonormal basis in R𝑝
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• let Π𝑝 : R𝑝 → Ω𝑝 be the orthogonal projection onto Ω𝑝

• considering 𝑇𝑓 as an operator from Ω𝑝 to R𝑝 , we obtain the following operator in Ω𝑝 :

𝑇′
𝑓

:= Π𝑝 ◦ 𝑇𝑓 : Ω𝑝 → Ω𝑝

Definition 2.2. The incidence of 𝑓 and Ω𝑝 is

[ 𝑓 ,Ω𝑝] := trace𝑇′
𝑓

Definition 2.3. For any 𝜔 =
∑

𝜔𝑖0 ...𝑖𝑝 𝑒𝑖0 ...𝑖𝑝 ∈ Ω𝑝 , the incidence of 𝑓 and 𝜔 is:

[ 𝑓 , 𝜔] := (𝑇𝑓𝜔, 𝜔)

Lemma 2.4. For any orthogonal basis {𝜔𝑘} in Ω𝑝 , we have:

[ 𝑓 ,Ω𝑝] =
∑
𝑘

[ 𝑓 , 𝜔𝑘]
∥𝜔𝑘 ∥2

Proof. It suffices to prove the statement for an orthonormal basis (i.e., ∥𝜔𝑘 ∥ = 1 for all 𝑘).

By the definition of the trace,
trace𝑇′

𝑓 =
∑
𝑘

(𝑇′
𝑓𝜔𝑘 , 𝜔𝑘)

For any 𝜔 ∈ Ω𝑝 , we have

(𝑇′
𝑓𝜔, 𝜔) =

(
Π𝑝𝑇𝑓𝜔, 𝜔

)
=
(
𝑇𝑓𝜔,Π𝑝𝜔

)
= (𝑇𝑓𝜔, 𝜔)

⇝ (𝑇′
𝑓𝜔, 𝜔) = [ 𝑓 , 𝜔]

so that the statement follows. □

Definition 2.5. For any 𝑁 ∈ N, the curvature operator 𝐾(𝑁) : R𝑉 → R of order 𝑁 is

𝐾(𝑁)( 𝑓 ) :=
𝑁∑
𝑝=0

(−1)𝑝
𝑝 + 1 [ 𝑓 ,Ω𝑝]

• if Ω𝑝 = {0} for all 𝑝 > 𝑁 , we write 𝐾(𝑁)
𝑓

= 𝐾 𝑓

• for 𝑓 = 1𝑥 for 𝑥 ∈ 𝑉 , we write

[𝑥,Ω𝑝] := [1𝑥 ,Ω𝑝] and
[𝑥, 𝜔] := [1𝑥 , 𝜔]

• if {𝜔𝑘} is an orthogonal basis of Ω𝑝 , then by the preceding lemma, we have:

[𝑥,Ω𝑝] =
∑
𝑘

[𝑥, 𝜔𝑘]
∥𝜔𝑘 ∥2
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• if the inner product is natural so that {𝑒𝑖0 ...𝑖𝑝 } is an orthonormal basis, then by (4.4), we have:

[𝑥, 𝑒𝑖0 ...𝑖𝑝 ] = 𝑚 where 𝑚 is the number of occurrences of 𝑥 in 𝑖0 , . . . , 𝑖𝑝

• as an example:

[𝑎, 𝑒𝑎𝑏𝑐𝑎] = 2
[𝑏, 𝑒𝑎𝑏𝑐𝑎] = 1
[𝑑, 𝑒𝑎𝑏𝑐𝑎] = 0

• in this case, for 𝜔 =
∑

𝜔𝑖0 ...𝑖𝑝 𝑒𝑖0 ...𝑖𝑝 , we have

[𝑥, 𝜔] =
∑

𝑖0 ...𝑖𝑝∈𝑉
(𝑤 𝑖0 ...𝑖𝑝 )2[𝑥, 𝑒𝑖0 ...𝑖𝑝 ]

Definition 2.6. Let 𝑁 ∈ N. The curvature of order 𝑁 at a vertex 𝑥 is

𝐾
(𝑁)
𝑥 := 𝐾(𝑁)

1𝑥

⇝ 𝐾
(𝑁)
𝑥 =

𝑁∑
𝑝=0

(−1)𝑝
𝑝 + 1 [𝑥,Ω𝑝]

Proposition 2.7. Gauss-Bonnet.

For any choice of the inner product in R𝑝 and for any 𝑁 , we have∑
𝑥∈𝑉

𝐾
(𝑁)
𝑥 =: 𝐾(𝑁)

total = 𝜒(𝑁) :=
𝑁∑
𝑝=0

dimΩ𝑝

Proof. Since
∑
𝑥∈𝑉 1𝑥 = 1, we obtain that

𝐾
(𝑁)
total =

∑
𝑥∈𝑉

𝐾
(𝑁)
𝑥

=
∑
𝑥∈𝑉

𝐾(𝑁)
1𝑥

= 𝐾(𝑁)
1

⇝ 𝐾
(𝑁)
total =

𝑁∑
𝑝=0

(−1)𝑝
[1,Ω𝑝]
𝑝 + 1

On the other hand, by (4.3),

[1, 𝜔] = (𝑇1𝜔, 𝜔)
= (𝑝 + 1)∥𝜔∥2
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If {𝜔𝑘} is an orthogonal basis in Ω𝑝 , then by (4.5),

[1,Ω𝑝] =
∑
𝑘

[1, 𝜔𝑘]
∥𝜔𝑘 ∥2

= (𝑝 + 1)dimΩ𝑝

This implies:

𝐾
(𝑁)
total =

𝑁∑
𝑝=0

(−1)𝑝 dimΩ𝑝

⇝ 𝐾
(𝑁)
total = 𝜒(𝑁)

□
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