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1 Path homology of digraphs

1.1 Dependence on the field K

e dimensions || = |[V| and |Q| = |E| do not depend on the choice of a field K

e using a geometric characterization of (), in Prop 1.2, we see that |Q;| is also independent of K

Conjecture 1.4: [Q);| is independent of K for any p (a priori |2, |(G, Q) < [€2,|(G, Fy)
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e let’s turn to |Hp|
e easy to show: |Hy| = ¢ where ¢ is the number of connected components of G, and hence is
independent of K

Conjecture 1.5: |[H| is independent of K.

Approach to the proof:

e by linear algebra: |H;| = |[Qq| — |dQ1]| — ||

= || = |E|
= 0| = V] -c

e ie, the first 2 terms are independent of K
e remains to verify: |d(),| is independent of K

Remark 1.1. Recall: for manifolds: |H,| may depend on K, e.g.,

|Ho|(RP?,Q) = 0 < 1 = |H,|(RP?, Fp)

1.1.1 Example

e there is a randomly generated digraph G that is a candidate for |H|(G, Q) < |Hz|(G, F2):

e for this digraph, we have:

— V] =20
- |E| =69
~ dimQ, =71

|H1|(G, F2) = |[H1|(G,Q) =2

and
|H2|(G,F2) =5

Conjecture 1.6: For this digraph, |[H>|(G,Q) =4 <5

e motivation for this conjecture is as follows

e one of 5 generators of Hy(G, F,) is:

u = (es318 + €81518) + €81519 + €91018 + €91019 + €10318 + €1483 + (€14819 + €141019) + €14103 + €15918 + €15919

By changing the signs of the terms appropriately, we obtain the following element of H»(G, Q):

il = (6’8318 - 681518) + €81519 — €91018 T+ €91019 — €10318 — €1483 + (614819 - 6141019) + €14103 — €15918 T €15919
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e the same method works for 4 out of 5 generators of Hy(G, F»).

e the fifth generator is:

eo73 + €083 + €326 + €327 + €3187 + 5148 + €8153 + €g1519 + (€907 + €9187) + €1427 + €1473+
91018 + (€905 + €9115) + (€91113 + €91913) + €91019 + €10318 + €111315 + (€1326 + €1356)
e0s8 + €14103 + (€14819 + €141019) + (€1536 + €1556) + (€15514 + €151914) + (€19132 + €19142)

— but for this generator, changing the signs does not work

Conjecture 1.7: It is always possible to choose bases in Q,(G, Q) and H,(G, Q) so that
each element of the basis has the form

Z W rey
with w7 e {+1,0}

Conjecture 1.8: A basis in 2,(G, F3) (resp. H,(G,F3)) is also a basis in Q,(G, Q) (resp.
H,(G,Q)). In particular, the Betti numbers over F3 and Q are the same.

2 Connection to simplexes

2.1 Path complex

e notion of path complex unifies digraphs and simplicial complexes
Definition 2.1. A path complex on a finite set V' is a collection P of elementary paths on V such that

ioil...i,,_lip€P=>i1...ipandio...ip_1€77

e e.g., each digraph G = (V,E) gives rise to a path complex P that consists of all allowed
elementary paths, i.e., of the paths ip — iy — -+ — i,

— in general, all paths in a path complex P are also called allowed

e the above definitions of d-invariant paths, spaces (3, and H, go through without any change
to general path complexes in place of digraphs because they are based on the notion of allowed
paths only

e for comparison, let’s recall the definition of an abstract simplicial complex

Definition 2.2. A simplicial complex with the set of vertices V is a collection S C 2V of subsets of V
such that if 0 € S, then any subset of ¢ is also an element of S.

e enumerate all elements of V' so that any subset ¢ C V can be regarded as a path iy ... 7, with
g <ip <-+-<ip



path complexes

simplicial complexes digraphs

Figure 1: visualizing the connection between digraphs, simplicial complexes, and path complexes

e above definition means that if iy...i, € S, then any sub-path iy, ... ikp € § as well (where
0<ko<ki<:---<ky<p)

- thus, a simplicial complex § is a path complex, and the theory of path homologies
appliesto S

e in this case, A, consists of linear combinations of all p-dimensional simplexes in S and
Qp, = Ay because 8ei0,,,ip is always allowed if €iy...i, 1S allowed

= the path homology theory of a path complex S coincides with the simplicial homology theory of S

2.2 Hasse diagram

e S: asimplicial complex with vertex set V

Definition 2.3. The Hasse diagram of S is the digraph Gs with:

e V(Gs)=S8
e 0 > 1foro, 7 e Sif:

- 7 C og,and

- |tl =10l =1

e i.e.,, 0 — 7 iff Tis a face of o of codimension 1.

e if Sisrealized geometrically as a collection of simplexes in R”, then Gs can be realized with
the set of vertices Bs consisting of barycenters of the simplexes of S as in Figure 2.2.

Theorem 1. (2.1) ‘
H"'(S) = H.(Gs)
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Figure 2: From left to right: a simplicial complex S; abstract digraph Gs; and the digraph Gs based
on BS

2.3 Triangulation as a closed path

M: a closed oriented n-dimensional manifold

T: its triangulation

- i.e., a partition into n-dimensional simplexes

V ={0,1,...}: setof all vertices of the simplexes from T

E: set of all edges of simplexes of T

- ~  (V,E)isagraph embedded on M

introduce directed edges i — jifi < jand j — iifi >

- then each simplex from T becomes a digraph-simplex
o T : the set of all digraph simplexes constructed in this way

5
- ie.,ip...iy € T ifip...i, is a monotone sequence that determines a simplex from T

*+ notice that any such path iy . .. i, is allowed

for any simplex from T with vertices iy . .. i,, define:

oo {1 if the orientation of the simplex iy ... i, matches the orientation of the manifold M
oV =
-1 else

Then, consider the following allowed n-path on the digraph G = (V, E):
o .= Z oio“‘i”eiomin (21)

o
1i9...in €T

Lemma 2.4. The path o is closed (i.e., do = 0). In particular, ¢ is d-invariant.

e the closed paths o defined by (2.1) is called a surface path on M

— there are several examples of surface paths ¢ that are also exact (i.e, 0 = dv for some
(n +1)-path v)



- in this case, v is called a solid path on M because v represents a solid shape whose
boundary is given by a surface path

— if 0 is not exact, then ¢ determines a non-trivial homology class from H,(G) and hence
represents a “cavity” in the triangulation T.

2.3.1 Example: M = S!

e a triangulation of S! is a polygon and the corresponding digraph G is cyclic as below:

2 1

e on each edge (7, j) of a polygon, we choose an arrow i — j arbitrarily (not necessarily if i < j)

e set

ij 1  if the arrow i — j goes counterclockwise
o=
-1 else

We have: )
o= Z a'le;j
i—j
For the digraph in the picture, then we have:

0 =ep1 — €21 + €23 + €314 — €54 + €50

Proposition 2.5.

1. If a polygon G is not a triangle or square, then

Qp = {0} forallp > 2
Hy=(o)
Hy, = {0} forallp > 2

2. If G is a triangle or a square, then

Qp = {0} forallp >3
Hy = {0} forallp > 1



23.2 Example: M = §"

e let the triangulation of S" be given by an (n + 1)-simplex

e then, G is an (n + 1)-simplex digraph as below:

e for this picture, n = 2 and
0 = e123 — €3 + €013 — €012 = 90123
so that ep123 is a solid path representing a tetrahedron

e in general, we also have:
0= an...n+1

so that eg_,+1 is a solid path representing an (n + 1)-simplex

2.3.3 Example: M = S2, octahedron.

e consider a triangulation of S? using an octahedron labelled in 2 different ways:

1. Case A:

- H, = {0}
0 = €024 — €025 — €014 T €015 — €234 + €235 + €134 — €135
= d (e0134 — €0234 + €0135 — €0235)

hence, v := ep134 — e0234 + €0135 — €0235 is a solid path and the octahedron represents a
solid shape



2. Case B:

- Hy=(0)

0 = €024 — €034 — €025 T €035 — €124 t €134 + €125 — €135

hence the octahedron represents a cavity

2.3.4 Example: M = S?, icosahedron.

e consider an icosahedron as a triangulation of S? as below:

e we have H, = ( 0 ) where

0 = —ep19 T €p12 — €1211 + €026 T €059 — €056 + €5610 — €139 + €1311 — €267
+ €6710 — €2711 — €349 + €348 — €4810 t €3811 — €459 + €4510 + €7810 — €7811

hence, the icosahedron represents a cavity.

Conjecture 2.4: For the icosahedron, dim H>(G) = 1 (& o is not a boundary) indepen-
dent of the numbering of the vertices.

Conjecture 2.5: For a general triangulation of S”, the homology group H,(G) is either
trivial or generated by . All other homology groups H,(G) are trivial.



2.4 Computational challenge
e interesting paper in computational neuroscience: “Cliques of neurons bound into cavities
provide a missing link between structure and function”

e they reconstruct a microcircuit from a rat brain as a graph (neurons and connections between
them)

o the size of the graph is |V| ~ 31,000 and |E| ~ 8,000, 000. They:

1. detect cliques in this graph
2. form a simplicial complex using these cliques

3. compute the Betti numbers over [,

e they were able to compute the 5th Betti number 5 and show that 5 > 0

Problem 2.6: Create computational tools capable of computing low-dimensional Betti
numbers for path homologies of digraphs of similar size.

e at present, our program can compute:

- 1 on a digraph with |V| ~ 7000 and |E| ~ 100, 000
- B2 on a digraph with |V| ~ 4000 and |E| ~ 25,000

e notes will be posted on the speaker’s website and updated after each seminar


https://www.frontiersin.org/articles/10.3389/fncom.2017.00048/full
https://www.frontiersin.org/articles/10.3389/fncom.2017.00048/full
https://www.math.uni-bielefeld.de/~grigor/dslides.pdf
https://www.math.uni-bielefeld.de/~grigor/
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