Lecture 2: Overview of path homology of digraphs

Mohabat

March 4, 2022

Contents

1	Path	n homology of digraphs	1
	1.1	Dependence on the field \mathbb{K}	1
		1.1.1 Example	2
2	Con	nection to simplexes	3
	2.1	Path complex	3
	2.2	Hasse diagram	4
	2.3	Triangulation as a closed path	5
		2.3.1 Example: $M = S^1$	6
		2.3.2 Example: $M = S^n$	7
		2.3.3 Example: $M = S^2$, octahedron.	7
		2.3.4 Example: $M = S^2$, icosahedron	8
	2.4	Computational challenge	9

1 Path homology of digraphs

1.1 Dependence on the field \mathbb{K}

- dimensions $|\Omega_0| = |V|$ and $|\Omega_1| = |E|$ do not depend on the choice of a field \mathbb{K}
- using a geometric characterization of Ω_2 in Prop 1.2, we see that $|\Omega_2|$ is also independent of \mathbb{K}

Conjecture 1.4: $|\Omega_p|$ is independent of *K* for any *p* (a priori $|\Omega_p|(G, \mathbb{Q}) \leq |\Omega_p|(G, \mathbb{F}_q)$

- let's turn to $|H_p|$
- easy to show: |*H*₀| = *c* where *c* is the number of connected components of *G*, and hence is independent of K

Conjecture 1.5: $|H_1|$ is independent of \mathbb{K} .

Approach to the proof:

- by linear algebra: $|H_1| = |\Omega_1| |\partial \Omega_1| |\partial \Omega_2|$
 - $|\Omega_1| = |E|$
 - $|\partial \Omega_1| = |V| c$
- i.e., the first 2 terms are independent of \mathbb{K}
- remains to verify: $|\partial \Omega_2|$ is independent of \mathbb{K}

Remark 1.1. Recall: for *manifolds*: $|H_p|$ may depend on \mathbb{K} , e.g.,

$$|H_2|(\mathbb{RP}^2, \mathbb{Q}) = 0 < 1 = |H_2|(\mathbb{RP}^2, \mathbb{F}_2)$$

1.1.1 Example

- there is a randomly generated digraph *G* that is a candidate for $|H_2|(G, \mathbb{Q}) < |H_2|(G, \mathbb{F}_2)$:
- for this digraph, we have:
 - -|V| = 20-|E| = 69

 $-\dim\Omega_2=71$

$$|H_1|(G, \mathbb{F}_2) = |H_1|(G, \mathbb{Q}) = 2$$

and

$$|H_2|(G,\mathbb{F}_2)=5$$

Conjecture 1.6: For this digraph, $|H_2|(G, \mathbb{Q}) = 4 < 5$

- motivation for this conjecture is as follows
- one of 5 generators of $H_2(G, \mathbb{F}_2)$ is:

 $u = (e_{8318} + e_{81518}) + e_{81519} + e_{91018} + e_{91019} + e_{10318} + e_{1483} + (e_{14819} + e_{141019}) + e_{14103} + e_{15918} + e_{15919} + e_{15919}$

By changing the signs of the terms appropriately, we obtain the following element of $H_2(G, \mathbb{Q})$:

 $\tilde{u} = (e_{8318} - e_{81518}) + e_{81519} - e_{91018} + e_{91019} - e_{10318} - e_{1483} + (e_{14819} - e_{141019}) + e_{14103} - e_{15918} + e_{15919}$

- the same method works for 4 out of 5 generators of $H_2(G, \mathbb{F}_2)$.
- the fifth generator is:

```
e_{073} + e_{083} + e_{326} + e_{327} + e_{3187} + e_{5148} + e_{8153} + e_{81519} + (e_{907} + e_{9187}) + e_{1427} + e_{1473} + e_{91018} + (e_{905} + e_{9115}) + (e_{91113} + e_{91913}) + e_{91019} + e_{10318} + e_{111315} + (e_{1326} + e_{1356}) + e_{058} + e_{14103} + (e_{14819} + e_{141019}) + (e_{1536} + e_{1556}) + (e_{15514} + e_{151914}) + (e_{19132} + e_{19142})
```

- but for this generator, changing the signs *does not work*

Conjecture 1.7: It is always possible to choose bases in $\Omega_p(G, \mathbb{Q})$ and $H_p(G, \mathbb{Q})$ so that each element of the basis has the form

$$\sum w^{i_0\dots i_p} e_{i_0\dots i_p}$$

with $w^{i_0...i_p} \in \{\pm 1, 0\}$

Conjecture 1.8: A basis in $\Omega_p(G, \mathbb{F}_3)$ (resp. $H_p(G, \mathbb{F}_3)$) is also a basis in $\Omega_p(G, \mathbb{Q})$ (resp. $H_p(G, \mathbb{Q})$). In particular, the Betti numbers over \mathbb{F}_3 and \mathbb{Q} are the same.

2 Connection to simplexes

2.1 Path complex

• notion of *path complex* unifies **digraphs** and **simplicial complexes**

Definition 2.1. A **path complex** on a finite set *V* is a collection \mathcal{P} of elementary paths on *V* such that

$$i_0i_1\ldots i_{p-1}i_p \in \mathcal{P} \Longrightarrow i_1\ldots i_p$$
 and $i_0\ldots i_{p-1} \in \mathcal{P}$

• e.g., each digraph G = (V, E) gives rise to a path complex \mathcal{P} that consists of all allowed elementary paths, i.e., of the paths $i_0 \rightarrow i_1 \rightarrow \cdots \rightarrow i_p$

- in general, all paths in a path complex \mathcal{P} are also called *allowed*

- the above definitions of *∂*-invariant paths, spaces Ω_p and H_p go through without any change to general path complexes in place of digraphs because they are based on the notion of allowed paths only
- for comparison, let's recall the definition of an abstract simplicial complex

Definition 2.2. A **simplicial complex** with the set of vertices *V* is a collection $S \subseteq 2^V$ of subsets of *V* such that if $\sigma \in S$, then any subset of σ is also an element of *S*.

• enumerate all elements of *V* so that any subset $\sigma \subseteq V$ can be regarded as a path $i_0 \dots i_p$ with $i_0 < i_1 < \dots < i_p$

Figure 1: visualizing the connection between digraphs, simplicial complexes, and path complexes

- above definition means that if $i_0 \dots i_p \in S$, then any **sub-path** $i_{k_0} \dots i_{k_p} \in S$ as well (where $0 \le k_0 < k_1 < \dots < k_q \le p$)
 - thus, a simplicial complex ${\cal S}$ is a path complex, and the theory of path homologies applies to ${\cal S}$
- in this case, A_p consists of linear combinations of all *p*-dimensional simplexes in *S* and $\Omega_p = A_p$ because $\partial e_{i_0...i_p}$ is always allowed if $e_{i_0...i_p}$ is allowed \Rightarrow the *path homology theory of a path complex S coincides with the simplicial homology theory of S*

2.2 Hasse diagram

• S: a simplicial complex with vertex set V

Definition 2.3. The **Hasse diagram** of S is the digraph G_S with:

- $V(G_{\mathcal{S}}) = \mathcal{S}$
- $\sigma \rightarrow \tau$ for $\sigma, \tau \in S$ if:
 - $\tau \subset \sigma$, and
 - $|\tau| = |\sigma| 1$
- i.e., $\sigma \rightarrow \tau$ iff τ is a face of σ of codimension 1.
- if S is realized geometrically as a collection of simplexes in \mathbb{R}^n , then G_S can be realized with the set of vertices B_S consisting of **barycenters** of the simplexes of S as in Figure 2.2.

Theorem 1. (2.1)

$$H^{simpl}_{*}(\mathcal{S}) \simeq H_{*}(G_{\mathcal{S}})$$

Figure 2: From left to right: a simplicial complex S; abstract digraph G_S ; and the digraph G_S based on B_S

2.3 Triangulation as a closed path

- *M*: a closed oriented *n*-dimensional manifold
- T: its triangulation
 - i.e., a partition into *n*-dimensional simplexes
- $V = \{0, 1, ...\}$: set of all vertices of the simplexes from *T*
- *E*: set of all edges of simplexes of *T*
 - \rightsquigarrow (*V*, *E*) is a graph embedded on *M*
- introduce *directed edges* $i \rightarrow j$ if i < j and $j \rightarrow i$ if i > j
 - then each simplex from *T* becomes a **digraph-simplex**
- \vec{T} : the set of all digraph simplexes constructed in this way
 - i.e., $i_0 \dots i_n \in \vec{T}$ if $i_0 \dots i_n$ is a monotone sequence that determines a simplex from T* notice that any such path $i_0 \dots i_p$ is *allowed*
- for any simplex from *T* with vertices $i_0 \dots i_n$, define:

 $\sigma^{i_0...i_n} := \begin{cases} 1 & \text{if the orientation of the simplex } i_0 \dots i_n \text{ matches the orientation of the manifold } M \\ -1 & \text{else} \end{cases}$

Then, consider the following allowed *n*-path on the digraph G = (V, E):

$$\sigma \coloneqq \sum_{i_0 \dots i_n \in \vec{T}} \sigma^{i_0 \dots i_n} e_{i_0 \dots i_n} \tag{2.1}$$

Lemma 2.4. The path σ is closed (i.e., $\partial \sigma = 0$). In particular, σ is ∂ -invariant.

- the closed paths σ defined by (2.1) is called a **surface path** on *M*
 - there are several examples of surface paths σ that are also exact (i.e, $\sigma = \partial v$ for some (n + 1)-path v)

- in this case, v is called a solid path on M because v represents a solid shape whose boundary is given by a surface path
- if σ is *not exact*, then σ determines a non-trivial homology class from $H_n(G)$ and hence represents a "cavity" in the triangulation *T*.

2.3.1 Example: $M = \mathbb{S}^1$

• a triangulation of S^1 is a polygon and the corresponding digraph *G* is **cyclic** as below:

• on each edge (i, j) of a polygon, we choose an arrow $i \rightarrow j$ arbitrarily (not necessarily if i < j)

• set

 $\sigma^{ij} := \begin{cases} 1 & \text{if the arrow } i \to j \text{ goes counterclockwise} \\ -1 & \text{else} \end{cases}$

We have:

$$\sigma = \sum_{i \to j} \sigma^{ij} e_{ij}$$

For the digraph in the picture, then we have:

$$\sigma = e_{01} - e_{21} + e_{23} + e_{34} - e_{54} + e_{50}$$

Proposition 2.5.

1. If a polygon G is not a triangle or square, then

$$\Omega_p = \{0\} \text{ for all } p \ge 2$$
$$H_1 = \langle \sigma \rangle$$
$$H_p = \{0\} \text{ for all } p \ge 2$$

2. If G is a triangle or a square, then

$$\Omega_p = \{0\} \text{ for all } p \ge 3$$
$$H_p = \{0\} \text{ for all } p \ge 1$$

2.3.2 Example: $M = \mathbb{S}^n$

- let the triangulation of \mathbb{S}^n be given by an (n + 1)-simplex
- then, *G* is an (n + 1)-simplex digraph as below:

• for this picture, n = 2 and

$$\sigma = e_{123} - e_{023} + e_{013} - e_{012} = \partial e_{0123}$$

so that e_{0123} is a *solid path* representing a tetrahedron

• in general, we also have:

$$\sigma = \partial e_{0...n+1}$$

so that $e_{0...n+1}$ is a solid path representing an (n + 1)-simplex

2.3.3 Example: $M = S^2$, octahedron.

- consider a triangulation of S² using an **octahedron** labelled in 2 different ways:
 - 1. Case A:

 $- H_2 = \{0\}$

$$\sigma = e_{024} - e_{025} - e_{014} + e_{015} - e_{234} + e_{235} + e_{134} - e_{135}$$
$$= \partial \left(e_{0134} - e_{0234} + e_{0135} - e_{0235} \right)$$

hence, $v := e_{0134} - e_{0234} + e_{0135} - e_{0235}$ is a solid path and the octahedron represents a **solid shape**

2. Case B:

 $\sigma = e_{024} - e_{034} - e_{025} + e_{035} - e_{124} + e_{134} + e_{125} - e_{135}$

hence the octahedron represents a cavity

2.3.4 Example: $M = S^2$, icosahedron.

- $H_2 = \langle \sigma \rangle$

• consider an **icosahedron** as a triangulation of S² as below:

• we have $H_2 = \langle \sigma \rangle$ where

 $\sigma = -e_{019} + e_{012} - e_{1211} + e_{026} + e_{059} - e_{056} + e_{5610} - e_{139} + e_{1311} - e_{267} + e_{6710} - e_{2711} - e_{349} + e_{348} - e_{4810} + e_{3811} - e_{459} + e_{4510} + e_{7810} - e_{7811}$

hence, the icosahedron represents a cavity.

Conjecture 2.4: For the icosahedron, dim $H_2(G) = 1$ ($\Leftrightarrow \sigma$ is not a boundary) independent of the numbering of the vertices.

Conjecture 2.5: For a general triangulation of \mathbb{S}^n , the homology group $H_n(G)$ is either trivial or generated by σ . All other homology groups $H_p(G)$ are trivial.

2.4 Computational challenge

- interesting paper in computational neuroscience: "Cliques of neurons bound into cavities provide a missing link between structure and function"
- they reconstruct a microcircuit from a rat brain as a graph (neurons and connections between them)
- the size of the graph is $|V| \sim 31,000$ and $|E| \sim 8,000,000$. They:
 - 1. detect cliques in this graph
 - 2. form a simplicial complex using these cliques
 - 3. compute the Betti numbers over \mathbb{F}_2
- they were able to compute the 5th Betti number β_5 and show that $\beta_5 > 0$

Problem 2.6: Create computational tools capable of computing low-dimensional Betti numbers for path homologies of digraphs of similar size.

- at present, our program can compute:
 - β_1 on a digraph with $|V| \sim 7000$ and $|E| \sim 100,000$
 - β_2 on a digraph with $|V| \sim 4000$ and $|E| \sim 25,000$
- notes will be posted on the speaker's website and updated after each seminar