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1 Path homology of digraphs

1.1 Dependence on the field K

• dimensions |Ω0 | = |+ | and |Ω1 | = |� | do not depend on the choice of a field K

• using a geometric characterization ofΩ2 in Prop 1.2, we see that |Ω2 | is also independent of K

Conjecture 1.4: |Ω? | is independent of  for any ? (a priori |Ω? |(�,Q) ≤ |Ω? |(�, F@)
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• let’s turn to |�? |

• easy to show: |�0 | = 2 where 2 is the number of connected components of �, and hence is
independent of K

Conjecture 1.5: |�1 | is independent of K.

Approach to the proof:

• by linear algebra: |�1 | = |Ω1 | − |%Ω1 | − |%Ω2 |

– |Ω1 | = |� |
– |%Ω1 | = |+ | − 2

• i.e., the first 2 terms are independent of K

• remains to verify: |%Ω2 | is independent of K

Remark 1.1. Recall: for manifolds: |�? | may depend on K, e.g.,

|�2 |(RP2 ,Q) = 0 < 1 = |�2 |(RP2 , F2)

1.1.1 Example

• there is a randomly generated digraph � that is a candidate for |�2 |(�,Q) < |�2 |(�, F2):

• for this digraph, we have:

– |+ | = 20
– |� | = 69
– dimΩ2 = 71

|�1 |(�, F2) = |�1 |(�,Q) = 2

and
|�2 |(�, F2) = 5

Conjecture 1.6: For this digraph, |�2 |(�,Q) = 4 < 5

• motivation for this conjecture is as follows

• one of 5 generators of �2(�, F2) is:

D = (48318 + 481518) + 481519 + 491018 + 491019 + 410318 + 41483 + (414819 + 4141019) + 414103 + 415918 + 415919

By changing the signs of the terms appropriately, we obtain the following element of �2(�,Q):

D̃ = (48318 − 481518) + 481519 − 491018 + 491019 − 410318 − 41483 + (414819 − 4141019) + 414103 − 415918 + 415919
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• the same method works for 4 out of 5 generators of �2(�, F2).

• the fifth generator is:

4073 + 4083 + 4326 + 4327 + 43187 + 45148 + 48153 + 481519 + (4907 + 49187) + 41427 + 41473+
491018 + (4905 + 49115) + (491113 + 491913) + 491019 + 410318 + 4111315 + (41326 + 41356)
4058 + 414103 + (414819 + 4141019) + (41536 + 41556) + (415514 + 4151914) + (419132 + 419142)

– but for this generator, changing the signs does not work

Conjecture 1.7: It is always possible to choose bases in Ω?(�,Q) and �?(�,Q) so that
each element of the basis has the form∑

F 80 ...8? 480 ...8?

with F 80 ...8? ∈ {±1, 0}

Conjecture 1.8: A basis in Ω?(�, F3) (resp. �?(�, F3)) is also a basis in Ω?(�,Q) (resp.
�?(�,Q)). In particular, the Betti numbers over F3 and Q are the same.

2 Connection to simplexes

2.1 Path complex

• notion of path complex unifies digraphs and simplicial complexes

Definition 2.1. A path complex on a finite set + is a collection P of elementary paths on + such that

8081 . . . 8?−18? ∈ P ⇒ 81 . . . 8? and 80 . . . 8?−1 ∈ P

• e.g., each digraph � = (+, �) gives rise to a path complex P that consists of all allowed
elementary paths, i.e., of the paths 80 → 81 → · · · → 8?

– in general, all paths in a path complex P are also called allowed

• the above definitions of %-invariant paths, spaces Ω? and �? go through without any change
to general path complexes in place of digraphs because they are based on the notion of allowed
paths only

• for comparison, let’s recall the definition of an abstract simplicial complex

Definition 2.2. A simplicial complex with the set of vertices + is a collection S ⊆ 2+ of subsets of +
such that if � ∈ S, then any subset of � is also an element of (.

• enumerate all elements of + so that any subset � ⊆ + can be regarded as a path 80 . . . 8? with
80 < 81 < · · · < 8?
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simplicial complexes digraphs

path complexes

Figure 1: visualizing the connection between digraphs, simplicial complexes, and path complexes

• above definition means that if 80 . . . 8? ∈ S, then any sub-path 8:0 . . . 8:? ∈ S as well (where
0 ≤ :0 < :1 < · · · < :@ ≤ ?)

– thus, a simplicial complex S is a path complex, and the theory of path homologies
applies to S

• in this case, A? consists of linear combinations of all ?-dimensional simplexes in S and
Ω? = A? because %480 ...8? is always allowed if 480 ...8? is allowed
⇒ the path homology theory of a path complex S coincides with the simplicial homology theory of S

2.2 Hasse diagram

• S: a simplicial complex with vertex set +

Definition 2.3. The Hasse diagram of S is the digraph �S with:

• +(�S) = S

• �→ � for �, � ∈ S if:

– � ⊂ �, and
– |�| = |� | − 1

• i.e., �→ � iff � is a face of � of codimension 1.

• if S is realized geometrically as a collection of simplexes in R= , then �S can be realized with
the set of vertices �S consisting of barycenters of the simplexes of S as in Figure 2.2.

Theorem 1. (2.1)
�

simpl
∗ (S) ' �∗(�S)
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Figure 2: From left to right: a simplicial complex S ; abstract digraph �S ; and the digraph �S based
on �S

2.3 Triangulation as a closed path

• ": a closed oriented =-dimensional manifold

• ): its triangulation

– i.e., a partition into =-dimensional simplexes

• + = {0, 1, . . . }: set of all vertices of the simplexes from )

• �: set of all edges of simplexes of )

–  (+, �) is a graph embedded on "

• introduce directed edges 8 → 9 if 8 < 9 and 9 → 8 if 8 > 9

– then each simplex from ) becomes a digraph-simplex

•
→
) : the set of all digraph simplexes constructed in this way

– i.e., 80 . . . 8= ∈
→
) if 80 . . . 8= is a monotone sequence that determines a simplex from )

∗ notice that any such path 80 . . . 8? is allowed

• for any simplex from ) with vertices 80 . . . 8= , define:

�80 ...8= :=

{
1 if the orientation of the simplex 80 . . . 8= matches the orientation of the manifold "
−1 else

Then, consider the following allowed =-path on the digraph � = (+, �):

� :=
∑

80 ...8=∈
→
)

�80 ...8= 480 ...8= (2.1)

Lemma 2.4. The path � is closed (i.e., %� = 0). In particular, � is %-invariant.

• the closed paths � defined by (2.1) is called a surface path on "

– there are several examples of surface paths � that are also exact (i.e, � = %E for some
(= + 1)-path E)
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– in this case, E is called a solid path on " because E represents a solid shape whose
boundary is given by a surface path

– if � is not exact, then � determines a non-trivial homology class from �=(�) and hence
represents a “cavity” in the triangulation ).

2.3.1 Example: " = S1

• a triangulation of S1 is a polygon and the corresponding digraph � is cyclic as below:

• on each edge (8 , 9) of a polygon, we choose an arrow 8 → 9 arbitrarily (not necessarily if 8 < 9)

• set

�8 9 :=

{
1 if the arrow 8 → 9 goes counterclockwise
−1 else

We have:
� =

∑
8→9

�8 948 9

For the digraph in the picture, then we have:

� = 401 − 421 + 423 + 434 − 454 + 450

Proposition 2.5.

1. If a polygon � is not a triangle or square, then

Ω? = {0} for all ? ≥ 2
�1 = 〈 � 〉
�? = {0} for all ? ≥ 2

2. If � is a triangle or a square, then

Ω? = {0} for all ? ≥ 3
�? = {0} for all ? ≥ 1
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2.3.2 Example: " = S=

• let the triangulation of S= be given by an (= + 1)-simplex

• then, � is an (= + 1)-simplex digraph as below:

• for this picture, = = 2 and

� = 4123 − 4023 + 4013 − 4012 = %40123

so that 40123 is a solid path representing a tetrahedron

• in general, we also have:
� = %40...=+1

so that 40...=+1 is a solid path representing an (= + 1)-simplex

2.3.3 Example: " = S2, octahedron.

• consider a triangulation of S2 using an octahedron labelled in 2 different ways:

1. Case A:

– �2 = {0}

� = 4024 − 4025 − 4014 + 4015 − 4234 + 4235 + 4134 − 4135

= % (40134 − 40234 + 40135 − 40235)

hence, E := 40134 − 40234 + 40135 − 40235 is a solid path and the octahedron represents a
solid shape
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2. Case B:

– �2 = 〈 � 〉

� = 4024 − 4034 − 4025 + 4035 − 4124 + 4134 + 4125 − 4135

hence the octahedron represents a cavity

2.3.4 Example: " = S2, icosahedron.

• consider an icosahedron as a triangulation of S2 as below:

• we have �2 = 〈 � 〉 where

� = −4019 + 4012 − 41211 + 4026 + 4059 − 4056 + 45610 − 4139 + 41311 − 4267

+ 46710 − 42711 − 4349 + 4348 − 44810 + 43811 − 4459 + 44510 + 47810 − 47811

hence, the icosahedron represents a cavity.

Conjecture 2.4: For the icosahedron, dim�2(�) = 1 (⇔ � is not a boundary) indepen-
dent of the numbering of the vertices.

Conjecture 2.5: For a general triangulation of S= , the homology group �=(�) is either
trivial or generated by �. All other homology groups �?(�) are trivial.
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2.4 Computational challenge

• interesting paper in computational neuroscience: “Cliques of neurons bound into cavities
provide a missing link between structure and function”

• they reconstruct a microcircuit from a rat brain as a graph (neurons and connections between
them)

• the size of the graph is |+ | ∼ 31, 000 and |� | ∼ 8, 000, 000. They:

1. detect cliques in this graph
2. form a simplicial complex using these cliques
3. compute the Betti numbers over F2

• they were able to compute the 5th Betti number �5 and show that �5 > 0

Problem 2.6: Create computational tools capable of computing low-dimensional Betti
numbers for path homologies of digraphs of similar size.

• at present, our program can compute:

– �1 on a digraph with |+ | ∼ 7000 and |� | ∼ 100, 000
– �2 on a digraph with |+ | ∼ 4000 and |� | ∼ 25, 000

• notes will be posted on the speaker’s website and updated after each seminar

9

https://www.frontiersin.org/articles/10.3389/fncom.2017.00048/full
https://www.frontiersin.org/articles/10.3389/fncom.2017.00048/full
https://www.math.uni-bielefeld.de/~grigor/dslides.pdf
https://www.math.uni-bielefeld.de/~grigor/

	Path homology of digraphs
	Dependence on the field K
	Example


	Connection to simplexes
	Path complex
	Hasse diagram
	Triangulation as a closed path
	Example: M=S1
	Example: M=Sn
	Example: M=S2, octahedron.
	Example: M=S2, icosahedron.

	Computational challenge


