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Seminar on path homology of digraphs

Speaker: Alexander Grigor’yan

Goal of the seminar: To elucidate the current state of research in homology of digraphs
and to outline open problems in the area.

¢ full notes will be available at the end of the seminar series on the speaker’s website.

Overview of topics in the seminar:

1. Path homology of digraphs

* paths in a finite set

¢ chain complex and path homology of a digraph
e examples of d-invariant paths

¢ examples of spaces (3, and H,

* example computation of (2, and H,,

* structure of Q)

¢ dependence on the field K


https://www.math.uni-bielefeld.de/~grigor/

2. Connection to simplexes

* path complex
¢ Hasse diagrams
¢ triangulation as a closed path

¢ computational challenge
3. Homological dimension

¢ an example of a digraph with infinite homological dimension
¢ random digraphs

¢ homological dimension and degree

* homologically trivial and spherical digraphs

¢ computational limitations
4. Curvature of digraphs

* motivation
® curvature operator
¢ examples of computation of curvature

¢ digraphs of constant curvature
5. Homology and Cartesian product of digraphs

¢ cross product of paths
¢ Cartesian product of digraphs

¢ Kiinneth formula
6. Path cohomology

e exterior derivative

1 Path homology of digraphs

1.1 Paths in a finite set

Definition 1.1. V a finite set and p > 0.

* An elementary p-path is any sequence i, i1, ..., i, of (p + 1) vertices of V — there may be
repeated elements.

o KK: afield

- Ay = Ay(V,K) is the K-linear space that consists of all formal K-linear combinations of
elementary p-paths in V. Elements of A, are called p-paths.



* elementary p-path ig, i1,...,1p € Ap is denoted €ip...i,
- e.g., we have:

A0:<ei2i€V>
A =<ei]-:i,j€V)
Ao = <€1']'k : i,j,kEV>

* then any p-path u € A, can be written in a form

— § igi1edp,. . .
u= u peloll...lp

i0,i1,/ip€V
where y'0't- ¢ K.

Definition 1.2. Let p > 1. A linear boundary operator d : A, — A1 is

p
deiy. i, = Z(_l)qez‘o...z’q...i,,
q=0
where iAq denotes omitting the index i,.
e Forp=0,de; :=0
- in particular, A_; = {0}
° eg:
- 861‘]‘ = e]- —€;
- dejjk = ejk — ek + eij
Lemma 1.3. 9% =0
Proof. For any p > 2, we have:
|4
2 -
d%€iy..i, = Z(_l)qaeio,,,i;,,_ip
q=0
P q-1 |4
— o A —1)" 1 A oa
= Z(—l)‘? Z(_l)reio...i,...iq...ip + Z O e i,
q=0 r=0 r=q+1
_ + +
= Z D" by Z D" i,
0<r<qg<p 0<g<r<p

By switching g and r in the second sum, we see that the two sums cancel and hence
(9261'0_.% =0

Thus, 9?u = 0 forall u € A,.



By this lemma, we have a chain complex A.(V):

d d d d d
e Ay 4

0 < Ay

AN

A1

AN

Ap <

Definition 1.4. An elementary p-path €i...ii, 1S regular if there are no consecutive repeats, i.e., ix # ix4+1
forallk =0,1,...,p — 1. Otherwise, it is irregular.

* I):= <€z‘0,..z‘p €.y 1S irregular ) C A, : subspace spanned by all irregular p-paths

Claim 1.5. dI, C I,y

Proof. If Cip...ip is irregular, then iy = ix4; for some k. We have the following:

k k+1
DCiy...iy = Ciy...iyy = Cigin.oiy + 0+ (=1) Cig i yipripenniy + (DY Chg i yipiganeiy o+ (1P eig iy
By the fact that ij = 7.1, the two middle terms cancel. As all other terms are irregular, then
deig..i, € Ip-1

as required. m]

¢ the claim tells us that d is well-defined on the quotient spaces R, := A, /I, and so we obtain
the regular chain complex R.(V):

d J d J J
0 < Ro < R R Rp-1 <

AN

Ry <
* by setting all irregular p-paths to be 0, we can identify R, with the subspace of A, spanned
by all regular paths
- eg., ifi # j, then¢;;; € Ry and as ¢;; = 0, we have:

aei]'i =eji — e tejj=ejte

1.2 Chain complex and path homology of a digraph

Definition 1.6. A digraph (directed graph) is a pair G := (V, E) of a set of vertices V and a set of
directed edges/arrows E C {V x V '\ diag} (i.e., we exclude self-loops).

e (i,j) € Eisdenoted i — j
Definition 1.7. G: a digraph
An elementary p-path iy ...i, on V is allowed if iy — ix41 forallk =0,...,p—1and non-allowed

otherwise.
Ap = Ap(G) = (e, 10 .. 1p is allowed )

is the K-linear space spanned by all allowed elementary p-paths. Its elements are called allowed
p-paths.



¢ every allowed path is regular so we have

Ay CRpy C Ay
What do we want to do?

* build a chain complex based on the subspaces A, C R,

* the issue is that in general, the subspaces A, are not invariant under d, e.g.:

a—>b—c

- in the above digraph, we have that e, € A»

— on the other hand, since ¢,. is not allowed, we have de,p. = epe — €ac + €ap & A
* we need a way to get around this invariance issue, so we define the following subspace of A,:
Qy=0Q,(G)={ueAy:duec A1} CA
Claim 1.8. JQ, C Q,_

Proof. Asu € Q, implies du € A,_1 and d(du) = 0 € A, o, thus du € Q,_; as required. O

Definition 1.9. Elements of (), are d-invariant p-paths
e obtain a chain complex Q. = Q.(G):

0 ¢— Qp¢2—Q 2 ... ¢

AN

AN
AN
@)
=
L
AN
@)
S
AN

* by construction: Qp = Ag = (e;)and Q1 = A; =(ejj:i —j)
- in general: Q, C A,
Definition 1.10. The path homologies of G are the homologies of the chain complex Q.(G), i.e.,
Hy(G) :=ker d|q,/Imdlq,,,
The Betti numbers of G are the dimensions of the homologies:

B,(G) := dim H,(G)

e easy to show: fo(G) = #{connected components of G}



1.3 Examples of d-invariant paths

Open problem: Producing interesting d-invariant paths.

1. A triangle is a sequence of 3 vertices a,b, c such thata - b — canda — ¢

* since e, € Ag and
deape = pe — Cac + €gp € Ay

then the triangle determines a 2-path e;;. € o

2. A square is a sequence of 4 vertices a,b,b’,c suchthata - b,b - c,a - b’,and b’ — ¢

b' ¢

Y

® since U = e pc — dgpe € Ag and

ou = (epc — €ac + €ap) — (errc — €ac + €ap)
=e€ap + €pc — Egpy — Cprc € -Al

then the square determines a 2-path u € Q.

3. A p-simplex/p-clique is a sequence of (p + 1) vertices 0, 1,...,p such thati — jforalli <j

* determines a p-path ep1.., € Q)

4. A 3-cube is a sequence of 8 vertices 0, 1, ..., 7 connected by arrows as here:



D 4

* let u = ega37 — 0137 + €157 — €0457 + €oa67 — 0267 € A3

* since we have:

du = (eo13 — e23)+(e157 — e137)+(ea37 — ea67)— (€046 — €026)— (€457 — ea67)—(e015 — €0a5) € A
then, u € Q3 and the 3-cube determines a d-invariant 3-path.

5. An exotic cube consists of 9 vertices connected by arrows as follows:

¢ determines a d-invariant 3-path v where:

U = ep237 — €0137 + €0157 — €0457 + €0867 — €0267 € 13

1.4 Examples of spaces (), and H,

Notation: For a vector space A over K, we write |A| := dimg A

1. Triangle as a digraph

* O = (eo1,€02,€12)

Qo = (ep12) = Az

ker d|q, = (eo1 —eo2 + €12 ) but eg1 — ep2 + e12 = dep12 € Im dg, so that H; = {0}
Hy, = {0} forall p > 2



2. Hexagon with diagonals

|Qo| =6
Q] =8

¢ (), is spanned by 2 squares:

Qs = (ep13 — €023, €014 — €024 )

Qp = {0} forallp > 3

Hi = (eiz—es3+ess—eia)
|Hi| =1

H, = {0} forallp > 2

3. Octahedron

AN
\/

€| =6
|| =12
¢ (), is spanned by 8 triangles:

Qy = ( €024, €034, €025, €035, €124, €134, €125, €135 >

Q| =8

Q, ={0}forallp >3

Hj = (ep24 — €034 — €025 + €035 — €124 + €134 + €125 — €135 )
|Ho| =1



* |[Hy|=0forp=1andp >3

4. Octahedron with different orientation

TS

AN

e ()= ( €024, €025, €014, €015, €234, €235, €134, €135, €013 — €023 )

Q3 = (0234 — €0134, €0235 — €0135 )
Q2| =9

Q3| =2

Qp = {0} forallp > 4

ker da, = (u,v ) where:

U = ep24 + €234 — €014 — €134 + (€013 — €023)

U = ep25 + €235 — €015 — €135 Tt (6013 - 6023)

Hs = {0} because:

u = d(ep234 — €0134)
v = d(ep235 — €0135)

5. 3-cube
6 . 1
N
2 — i
- -—af
2] > |
* Q| =8
* || =12

¢ (), is spanned by 6 squares:

Qo = (eo13 — €023, €015 — €045, €026 — €046, €137 — €157, €237 — €267, €457 — €467 )

— hence || = 6



¢ ()3 is spanned by one 3-cube:

Q3 = (o237 — €0137 + €0157 — €0457 + €0467 — 0267 )
— hence |Q3] =1
* |Qy|=0forallp >4
* |Hy|=0forallp > 1

Remark 1.11. Computations of spaces Q,(G) and H,(G) amount to computing ranks and null spaces
of large matrices. For numerical computation of H,(G, Fz), currently use a C++ program written by
Chao Chen in 2012.

1.5 Structure of Q,

* Recall that Qg = (e; ) consists of all vertices and Q; = {e;j : i — j} consists of all arrows
* What about higher Q,’s?
Proposition 1.12.

1. The space Qs is spanned by all triangles ey, squares eape — eqprc, and double arrows egp,

2. |Qg| = |A2| — s where s is the number of semi-arrows — i.e., pairs of vertices x, y such that x 4>y
but x — z — y for some intermediary vertex z.

¢ the triangles and double arrows are always linearly independent

¢ the squares can be dependent

Example:
4
0
3
2
For this digraph, we have 3 squares:
€013 — €023
€043 — €013
€023 — €043

but their sum is 0 (so they are dependent)

10



e in this case, |[Qs| =2 =|As| —s=3-1
Definition 1.13. X,Y : digraphs

A map of vertex sets f : X — Y is a morphism of digraphs if for any a — b € X we have either:

1. f(a) = f(b) € Y;or
2. f(a)=f()inY

i.e., the image of an arrow is either an arrow or a vertex (same defn we’re used to)
The image of a path €iy...i, 1S
f (ei0~~-ip) = ef(iO)-"f(ip)

so that the image of an allowed path is either allowed or zero (that is also allowed.

e itis clear that f o d = d o f so that morphism images of d-invariant paths are also d-invariant

* Some possible morphism images of a square eg13 — €g23:

a triangle e,

a double arrow e,p,

Thus, we can rephrase the proposition as follows:
Proposition 1.14. (rephrasing of proposition (1))

Q) is spanned by squares and their morphism images. i.e., squares are basic shapes of Q.

Open Problem: Describe all basic shapes in (3 and in general, in Q,, for p > 3.
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