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Seminar on path homology of digraphs

Speaker: Alexander Grigor’yan

Goal of the seminar: To elucidate the current state of research in homology of digraphs
and to outline open problems in the area.

• full notes will be available at the end of the seminar series on the speaker’s website.

Overview of topics in the seminar:

1. Path homology of digraphs

• paths in a finite set
• chain complex and path homology of a digraph
• examples of %-invariant paths
• examples of spaces Ω? and �?

• example computation of Ω? and �?

• structure of Ω?

• dependence on the field K
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2. Connection to simplexes

• path complex
• Hasse diagrams
• triangulation as a closed path
• computational challenge

3. Homological dimension

• an example of a digraph with infinite homological dimension
• random digraphs
• homological dimension and degree
• homologically trivial and spherical digraphs
• computational limitations

4. Curvature of digraphs

• motivation
• curvature operator
• examples of computation of curvature
• digraphs of constant curvature

5. Homology and Cartesian product of digraphs

• cross product of paths
• Cartesian product of digraphs
• Künneth formula

6. Path cohomology

• exterior derivative

1 Path homology of digraphs

1.1 Paths in a finite set

Definition 1.1. + a finite set and ? ≥ 0.

• An elementary ?-path is any sequence 80 , 81 , . . . , 8? of (? + 1) vertices of + – there may be
repeated elements.

• K: a field

– Λ? := Λ?(+,K) is the K-linear space that consists of all formal K-linear combinations of
elementary ?-paths in + . Elements of Λ? are called ?-paths.
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• elementary ?-path 80 , 81 , . . . , 8? ∈ Λ? is denoted 480 ...8?

– e.g., we have:

Λ0 = 〈 48 : 8 ∈ + 〉
Λ1 = 〈 48 9 : 8 , 9 ∈ + 〉
Λ2 = 〈 48 9: : 8 , 9 , : ∈ + 〉

• then any ?-path D ∈ Λ? can be written in a form

D =
∑

80 ,81 ,...,8?∈+
D 80 81 ...8? 480 81 ...8?

where D 80 81 ...8? ∈ K.

Definition 1.2. Let ? ≥ 1. A linear boundary operator % : Λ? → Λ?−1 is

%480 ...8? :=
?∑

@=0
(−1)@480 ...8̂@ ...8?

where 8̂@ denotes omitting the index 8@ .

• For ? = 0, %48 := 0

– in particular, Λ−1 = {0}

• e.g:

– %48 9 = 4 9 − 48

– %48 9: = 4 9: − 48: + 48 9

Lemma 1.3. %2 = 0

Proof. For any ? ≥ 2, we have:

%2480 ...8? =

?∑
@=0

(−1)@%480 ...8̂@ ...8?

=

?∑
@=0

(−1)@ ©­«
@−1∑
A=0

(−1)A 480 ...8̂A ...8̂@ ...8? +
?∑

A=@+1
(−1)A−1480 ...8̂@ ...8̂A ...8?

ª®¬
=

∑
0≤A<@≤?

(−1)@+A 480 ...8̂A ...8̂@ ...8? −
∑

0≤@<A≤?
(−1)@+A 480 ...8̂@ ...8̂A ...8?

By switching @ and A in the second sum, we see that the two sums cancel and hence

%2480 ...8? = 0

Thus, %2D = 0 for all D ∈ Λ? . �
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By this lemma, we have a chain complex Λ∗(+):

0 Λ0 Λ1 · · · Λ?−1 Λ? · · ·% % % % %

Definition 1.4. An elementary ?-path 480 ...8? is regular if there are no consecutive repeats, i.e., 8: ≠ 8:+1
for all : = 0, 1, . . . , ? − 1. Otherwise, it is irregular.

• �? := 〈 480 ...8? : 480 ...8? is irregular 〉 ⊂ Λ? : subspace spanned by all irregular ?-paths

Claim 1.5. %�? ⊂ �?−1

Proof. If 480 ...8? is irregular, then 8: = 8:+1 for some :. We have the following:

%480 ...8? = 481 ...8? − 480 82 ...8? + · · · + (−1):480 ...8:−1 8:+1 8:+2 ...8? + (−1):+1480 ...8:−1 8: 8:+2 ...8? + · · · + (−1)?480 ...8?−1

By the fact that 8: = 8:+1, the two middle terms cancel. As all other terms are irregular, then

%480 ...8? ∈ �?−1

as required. �

• the claim tells us that % is well-defined on the quotient spaces R? := Λ?/�? and so we obtain
the regular chain complex R∗(+):

0 R0 R1 · · · R?−1 R? · · ·% % % % %

• by setting all irregular ?-paths to be 0, we can identify R? with the subspace of Λ? spanned
by all regular paths

– e.g., if 8 ≠ 9, then 48 98 ∈ R2 and as 488 = 0, we have:

%48 98 = 4 98 − 488 + 48 9 = 4 98 + 48 9

1.2 Chain complex and path homology of a digraph

Definition 1.6. A digraph (directed graph) is a pair � := (+, �) of a set of vertices + and a set of
directed edges/arrows � ⊂ {+ ×+ \ diag} (i.e., we exclude self-loops).

• (8 , 9) ∈ � is denoted 8 → 9

Definition 1.7. �: a digraph

An elementary ?-path 80 . . . 8? on+ is allowed if 8: → 8:+1 for all : = 0, . . . , ?−1 and non-allowed
otherwise.

A? := A?(�) = 〈 480 ...8? : 80 . . . 8? is allowed 〉
is the K-linear space spanned by all allowed elementary ?-paths. Its elements are called allowed
?-paths.
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• every allowed path is regular so we have

A? ⊂ R? ⊂ Λ?

What do we want to do?

• build a chain complex based on the subspaces A? ⊂ R?

• the issue is that in general, the subspaces A? are not invariant under %, e.g.:

0 1 2

– in the above digraph, we have that 4012 ∈ A2

– on the other hand, since 402 is not allowed, we have %4012 = 412 − 402 + 401 ∉ A1

• we need a way to get around this invariance issue, so we define the following subspace of A? :

Ω? = Ω?(�) := {D ∈ A? : %D ∈ A?−1} ⊂ A?

Claim 1.8. %Ω? ⊂ Ω?−1

Proof. As D ∈ Ω? implies %D ∈ A?−1 and %(%D) = 0 ∈ A?−2, thus %D ∈ Ω?−1 as required. �

Definition 1.9. Elements of Ω? are %-invariant ?-paths

• obtain a chain complex Ω∗ = Ω∗(�):

0 Ω0 Ω1 · · · Ω?−1 Ω? · · ·% % % % %

• by construction: Ω0 = A0 = 〈 48 〉 and Ω1 = A1 = 〈 48 9 : 8 → 9 〉

– in general: Ω? ⊂ A?

Definition 1.10. The path homologies of � are the homologies of the chain complex Ω∗(�), i.e.,

�?(�) := ker %|Ω?/Im %|Ω?+1

The Betti numbers of � are the dimensions of the homologies:

�?(�) := dim�?(�)

• easy to show: �0(�) = #{connected components of �}
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1.3 Examples of %-invariant paths

Open problem: Producing interesting %-invariant paths.

1. A triangle is a sequence of 3 vertices 0, 1, 2 such that 0 → 1 → 2 and 0 → 2

• since 4012 ∈ A2 and
%4012 = 412 − 402 + 401 ∈ A1

then the triangle determines a 2-path 4012 ∈ Ω2

2. A square is a sequence of 4 vertices 0, 1, 1′, 2 such that 0 → 1, 1 → 2, 0 → 1′, and 1′ → 2

• since D = 4012 − 001′2 ∈ A2 and

%D = (412 − 402 + 401) − (41′2 − 402 + 401′)
= 401 + 412 − 401′ − 41′2 ∈ A1

then the square determines a 2-path D ∈ Ω2.

3. A ?-simplex/?-clique is a sequence of (? + 1) vertices 0, 1, . . . , ? such that 8 → 9 for all 8 < 9

• determines a ?-path 401...? ∈ Ω?

4. A 3-cube is a sequence of 8 vertices 0, 1, . . . , 7 connected by arrows as here:
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• let D = 40237 − 40137 + 40157 − 40457 + 40467 − 40267 ∈ A3

• since we have:

%D = (4013 − 4023)+(4157 − 4137)+(4237 − 4267)−(4046 − 4026)−(4457 − 4467)−(4015 − 4045) ∈ A2

then, D ∈ Ω3 and the 3-cube determines a %-invariant 3-path.

5. An exotic cube consists of 9 vertices connected by arrows as follows:

• determines a %-invariant 3-path E where:

E = 40237 − 40137 + 40157 − 40457 + 40867 − 40267 ∈ Ω3

1.4 Examples of spaces Ω? and �?

Notation: For a vector space � over K, we write |�| := dimK �

1. Triangle as a digraph

• Ω1 = 〈 401 , 402 , 412 〉
• Ω2 = 〈 4012 〉 = A2

• ker %|Ω1 = 〈 401 − 402 + 412 〉 but 401 − 402 + 412 = %4012 ∈ Im %Ω2 so that �1 = {0}
• �? = {0} for all ? ≥ 2
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2. Hexagon with diagonals

• |Ω0 | = 6
• |Ω1 | = 8
• Ω2 is spanned by 2 squares:

Ω2 = 〈 4013 − 4023 , 4014 − 4024 〉

• Ω? = {0} for all ? ≥ 3
• �1 = 〈 413 − 453 + 454 − 414 〉
• |�1 | = 1
• �? = {0} for all ? ≥ 2

3. Octahedron

• |Ω0 | = 6
• |Ω1 | = 12
• Ω2 is spanned by 8 triangles:

Ω2 = 〈 4024 , 4034 , 4025 , 4035 , 4124 , 4134 , 4125 , 4135 〉

• |Ω2 | = 8
• Ω? = {0} for all ? ≥ 3
• �2 = 〈 4024 − 4034 − 4025 + 4035 − 4124 + 4134 + 4125 − 4135 〉
• |�2 | = 1
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• |�? | = 0 for ? = 1 and ? ≥ 3

4. Octahedron with different orientation

• Ω2 = 〈 4024 , 4025 , 4014 , 4015 , 4234 , 4235 , 4134 , 4135 , 4013 − 4023 〉
• Ω3 = 〈 40234 − 40134 , 40235 − 40135 〉
• |Ω2 | = 9
• |Ω3 | = 2
• Ω? = {0} for all ? ≥ 4
• ker %Ω2 = 〈 D, E 〉 where:

D = 4024 + 4234 − 4014 − 4134 + (4013 − 4023)
E = 4025 + 4235 − 4015 − 4135 + (4013 − 4023)

• �2 = {0} because:

D = % (40234 − 40134)
E = % (40235 − 40135)

5. 3-cube

• |Ω0 | = 8
• |Ω1 | = 12
• Ω2 is spanned by 6 squares:

Ω2 = 〈 4013 − 4023 , 4015 − 4045 , 4026 − 4046 , 4137 − 4157 , 4237 − 4267 , 4457 − 4467 〉

– hence |Ω2 | = 6
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• Ω3 is spanned by one 3-cube:

Ω3 = 〈 40237 − 40137 + 40157 − 40457 + 40467 − 40267 〉
– hence |Ω3 | = 1

• |Ω? | = 0 for all ? ≥ 4
• |�? | = 0 for all ? ≥ 1

Remark 1.11. Computations of spacesΩ?(�) and �?(�) amount to computing ranks and null spaces
of large matrices. For numerical computation of �?(�, F2), currently use a C++ program written by
Chao Chen in 2012.

1.5 Structure of Ω?

• Recall that Ω0 = 〈 48 〉 consists of all vertices and Ω1 = {48 9 : 8 → 9} consists of all arrows

• What about higher Ω?’s?

Proposition 1.12.

1. The space Ω2 is spanned by all triangles 4012 , squares 4012 − 401′2 , and double arrows 4010

2. |Ω2 | = |A2 | − B where B is the number of semi-arrows – i.e., pairs of vertices G, H such that G 6→ H

but G → I → H for some intermediary vertex I.

• the triangles and double arrows are always linearly independent

• the squares can be dependent

Example:

For this digraph, we have 3 squares:

4013 − 4023

4043 − 4013

4023 − 4043

but their sum is 0 (so they are dependent)
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• in this case, |Ω2 | = 2 = |A2 | − B = 3 − 1

Definition 1.13. -,. : digraphs

A map of vertex sets 5 : - → . is a morphism of digraphs if for any 0 → 1 ∈ - we have either:

1. 5 (0) → 5 (1) ∈ .; or

2. 5 (0) = 5 (1) in .

i.e., the image of an arrow is either an arrow or a vertex (same defn we’re used to)

The image of a path 480 ...8? is
5
(
480 ...8?

)
:= 4 5 (80)... 5 (8?)

so that the image of an allowed path is either allowed or zero (that is also allowed.

• it is clear that 5 ◦ % = % ◦ 5 so that morphism images of %-invariant paths are also %-invariant

• Some possible morphism images of a square 4013 − 4023:

– a triangle 4012

– a double arrow 4010

Thus, we can rephrase the proposition as follows:

Proposition 1.14. (rephrasing of proposition (1))

Ω2 is spanned by squares and their morphism images. i.e., squares are basic shapes of Ω2.

Open Problem: Describe all basic shapes in Ω3 and in general, in Ω? for ? > 3.
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