Lecture 1: Overview of path homology theory of digraphs

Mohabat

February 25, 2022

Contents

1 Path homology of digraphs		2	
	1.1	Paths in a finite set	2
	1.2	Chain complex and path homology of a digraph	4
	1.3	Examples of ∂ -invariant paths	6
	1.4	Examples of spaces Ω_p and H_p	7
	1.5	Structure of Ω_p	10
Seminar on path homology of digraphs			

Speaker: Alexander Grigor'yan

Goal of the seminar: To elucidate the current state of research in homology of digraphs and to outline open problems in the area.

• full notes will be available at the end of the seminar series on the speaker's website.

Overview of topics in the seminar:

- 1. Path homology of digraphs
 - paths in a finite set
 - chain complex and path homology of a digraph
 - examples of ∂ -invariant paths
 - examples of spaces Ω_p and H_p
 - example computation of Ω_p and H_p
 - structure of Ω_p
 - dependence on the field $\mathbb K$

- 2. Connection to simplexes
 - path complex
 - Hasse diagrams
 - triangulation as a closed path
 - computational challenge
- 3. Homological dimension
 - an example of a digraph with infinite homological dimension
 - random digraphs
 - homological dimension and degree
 - homologically trivial and spherical digraphs
 - computational limitations
- 4. Curvature of digraphs
 - motivation
 - curvature operator
 - examples of computation of curvature
 - digraphs of constant curvature
- 5. Homology and Cartesian product of digraphs
 - cross product of paths
 - Cartesian product of digraphs
 - Künneth formula
- 6. Path cohomology
 - exterior derivative

1 Path homology of digraphs

1.1 Paths in a finite set

Definition 1.1. *V* a finite set and $p \ge 0$.

- An **elementary** p-**path** is any sequence i_0, i_1, \ldots, i_p of (p + 1) vertices of V there *may* be repeated elements.
- \mathbb{K} : a field
 - $\Lambda_p := \Lambda_p(V, \mathbb{K})$ is the \mathbb{K} -linear space that consists of all formal \mathbb{K} -linear combinations of elementary *p*-paths in *V*. Elements of Λ_p are called *p*-paths.

• elementary *p*-path $i_0, i_1, \ldots, i_p \in \Lambda_p$ is denoted $e_{i_0 \ldots i_p}$

- e.g., we have:

$$\Lambda_{0} = \langle e_{i} : i \in V \rangle$$

$$\Lambda_{1} = \langle e_{ij} : i, j \in V \rangle$$

$$\Lambda_{2} = \langle e_{ijk} : i, j, k \in V \rangle$$

• then any *p*-path $u \in \Lambda_p$ can be written in a form

$$u = \sum_{i_0, i_1, \dots, i_p \in V} u^{i_0 i_1 \dots i_p} e_{i_0 i_1 \dots i_p}$$

where $u^{i_0 i_1 \dots i_p} \in \mathbb{K}$.

Definition 1.2. Let $p \ge 1$. A linear **boundary operator** $\partial : \Lambda_p \to \Lambda_{p-1}$ is

$$\partial e_{i_0\dots i_p} := \sum_{q=0}^p (-1)^q e_{i_0\dots \hat{i_q}\dots i_p}$$

where $\hat{i_q}$ denotes omitting the index i_q .

- For p = 0, $\partial e_i := 0$
 - in particular, $\Lambda_{-1} = \{0\}$
- e.g:

$$- \partial e_{ij} = e_j - e_i$$

- $\partial e_{ijk} = e_{jk} - e_{ik} + e_{ij}$

Lemma 1.3. $\partial^2 = 0$

Proof. For any $p \ge 2$, we have:

$$\begin{split} \partial^2 e_{i_0\dots i_p} &= \sum_{q=0}^p (-1)^q \partial e_{i_0\dots \hat{i}_q\dots i_p} \\ &= \sum_{q=0}^p (-1)^q \left(\sum_{r=0}^{q-1} (-1)^r e_{i_0\dots \hat{i}_r\dots \hat{i}_q\dots i_p} + \sum_{r=q+1}^p (-1)^{r-1} e_{i_0\dots \hat{i}_q\dots \hat{i}_r\dots i_p} \right) \\ &= \sum_{0 \leq r < q \leq p} (-1)^{q+r} e_{i_0\dots \hat{i}_r\dots \hat{i}_q\dots i_p} - \sum_{0 \leq q < r \leq p} (-1)^{q+r} e_{i_0\dots \hat{i}_q\dots \hat{i}_r\dots i_p} \end{split}$$

By switching q and r in the second sum, we see that the two sums cancel and hence

$$\partial^2 e_{i_0 \dots i_p} = 0$$

Thus, $\partial^2 u = 0$ for all $u \in \Lambda_p$.

By this lemma, we have a **chain complex** $\Lambda_*(V)$:

 $0 \longleftarrow \Lambda_0 \xleftarrow{\partial} \Lambda_1 \xleftarrow{\partial} \cdots \xleftarrow{\partial} \Lambda_{p-1} \xleftarrow{\partial} \Lambda_p \xleftarrow{\partial} \cdots$

Definition 1.4. An elementary *p*-path $e_{i_0...i_p}$ is **regular** if there are no consecutive repeats, i.e., $i_k \neq i_{k+1}$ for all k = 0, 1, ..., p - 1. Otherwise, it is **irregular**.

• $I_p := \langle e_{i_0...i_p} : e_{i_0...i_p} \text{ is irregular } \rangle \subset \Lambda_p$: subspace spanned by all irregular *p*-paths

Claim 1.5. $\partial I_p \subset I_{p-1}$

Proof. If $e_{i_0...i_p}$ is irregular, then $i_k = i_{k+1}$ for some k. We have the following:

$$\partial e_{i_0\dots i_p} = e_{i_1\dots i_p} - e_{i_0i_2\dots i_p} + \dots + (-1)^k e_{i_0\dots i_{k-1}i_{k+1}i_{k+2}\dots i_p} + (-1)^{k+1} e_{i_0\dots i_{k-1}i_ki_{k+2}\dots i_p} + \dots + (-1)^p e_{i_0\dots i_{p-1}i_{p-1}}$$

By the fact that $i_k = i_{k+1}$, the two middle terms cancel. As all other terms are irregular, then

$$\partial e_{i_0...i_p} \in I_{p-1}$$

as required.

 the claim tells us that ∂ is well-defined on the quotient spaces R_p := Λ_p/I_p and so we obtain the regular chain complex R_{*}(V):

$$0 \longleftarrow \mathcal{R}_0 \xleftarrow{\partial} \mathcal{R}_1 \xleftarrow{\partial} \cdots \xleftarrow{\partial} \mathcal{R}_{p-1} \xleftarrow{\partial} \mathcal{R}_p \xleftarrow{\partial} \cdots$$

 by setting all irregular *p*-paths to be 0, we can identify *R_p* with the subspace of Λ_p spanned by all regular paths

– e.g., if $i \neq j$, then $e_{iji} \in \mathcal{R}_2$ and as $e_{ii} = 0$, we have:

$$\partial e_{iji} = e_{ji} - e_{ii} + e_{ij} = e_{ji} + e_{ij}$$

1.2 Chain complex and path homology of a digraph

Definition 1.6. A **digraph** (*directed graph*) is a pair G := (V, E) of a set of **vertices** V and a set of **directed edges/arrows** $E \subset \{V \times V \setminus \text{diag}\}$ (i.e., we exclude self-loops).

• $(i, j) \in E$ is denoted $i \to j$

Definition 1.7. G: a digraph

An elementary *p*-path $i_0 \dots i_p$ on *V* is **allowed** if $i_k \rightarrow i_{k+1}$ for all $k = 0, \dots, p-1$ and **non-allowed** otherwise.

$$\mathcal{A}_p := \mathcal{A}_p(G) = \langle e_{i_0 \dots i_p} : i_0 \dots i_p \text{ is allowed } \rangle$$

is the \mathbb{K} -linear space spanned by all allowed elementary *p*-paths. Its elements are called **allowed** *p*-paths.

• every allowed path is regular so we have

$$\mathcal{A}_p \subset \mathcal{R}_p \subset \Lambda_p$$

What do we want to do?

- build a chain complex based on the subspaces $A_p \subset \mathcal{R}_p$
- the issue is that in general, the subspaces A_p are *not invariant under* ∂ , e.g.:

$$a \longrightarrow b \longrightarrow c$$

- in the above digraph, we have that $e_{abc} \in A_2$
- on the other hand, since e_{ac} is not allowed, we have $\partial e_{abc} = e_{bc} e_{ac} + e_{ab} \notin A_1$
- we need a way to get around this invariance issue, so we define the following subspace of A_p :

$$\Omega_p = \Omega_p(G) := \{ u \in \mathcal{A}_p : \partial u \in \mathcal{A}_{p-1} \} \subset \mathcal{A}_p$$

Claim 1.8. $\partial \Omega_p \subset \Omega_{p-1}$

Proof. As $u \in \Omega_p$ implies $\partial u \in \mathcal{A}_{p-1}$ and $\partial(\partial u) = 0 \in \mathcal{A}_{p-2}$, thus $\partial u \in \Omega_{p-1}$ as required. *Definition* 1.9. Elements of Ω_p are ∂ -invariant p-paths

• obtain a chain complex $\Omega_* = \Omega_*(G)$:

$$0 \longleftarrow \Omega_0 \xleftarrow{\partial} \Omega_1 \xleftarrow{\partial} \cdots \xleftarrow{\partial} \Omega_{p-1} \xleftarrow{\partial} \Omega_p \xleftarrow{\partial} \cdots$$

- by construction: $\Omega_0 = A_0 = \langle e_i \rangle$ and $\Omega_1 = A_1 = \langle e_{ij} : i \rightarrow j \rangle$
 - in general: $\Omega_p \subset \mathcal{A}_p$

Definition 1.10. The **path homologies of** *G* are the homologies of the chain complex $\Omega_*(G)$, i.e.,

$$H_p(G) := \ker \partial|_{\Omega_p} / \operatorname{Im} \partial|_{\Omega_{p+1}}$$

The **Betti numbers** of *G* are the dimensions of the homologies:

$$\beta_p(G) := \dim H_p(G)$$

• easy to show: $\beta_0(G) = \#\{\text{connected components of } G\}$

1.3 Examples of ∂ -invariant paths

Open problem: Producing interesting ∂ -invariant paths.

1. A **triangle** is a sequence of 3 vertices *a*, *b*, *c* such that $a \rightarrow b \rightarrow c$ and $a \rightarrow c$

• since $e_{abc} \in A_2$ and

$$\partial e_{abc} = e_{bc} - e_{ac} + e_{ab} \in \mathcal{A}_1$$

then the triangle determines a 2-path $e_{abc} \in \Omega_2$

2. A **square** is a sequence of 4 vertices *a*, *b*, *b'*, *c* such that $a \rightarrow b$, $b \rightarrow c$, $a \rightarrow b'$, and $b' \rightarrow c$

• since $u = e_{abc} - a_{ab'c} \in A_2$ and

$$\partial u = (e_{bc} - e_{ac} + e_{ab}) - (e_{b'c} - e_{ac} + e_{ab'}) = e_{ab} + e_{bc} - e_{ab'} - e_{b'c} \in \mathcal{A}_1$$

then the square determines a 2-path $u \in \Omega_2$.

3. A *p*-simplex/*p*-clique is a sequence of (p + 1) vertices 0, 1, ..., p such that $i \rightarrow j$ for all i < j

- determines a *p*-path $e_{01...p} \in \Omega_p$
- 4. A **3-cube** is a sequence of 8 vertices 0, 1, ..., 7 connected by arrows as here:

- let $u = e_{0237} e_{0137} + e_{0157} e_{0457} + e_{0467} e_{0267} \in \mathcal{A}_3$
- since we have:

$$\partial u = (e_{013} - e_{023}) + (e_{157} - e_{137}) + (e_{237} - e_{267}) - (e_{046} - e_{026}) - (e_{457} - e_{467}) - (e_{015} - e_{045}) \in \mathcal{A}_2$$

then, $u \in \Omega_3$ and the 3-cube determines a ∂ -invariant 3-path.

5. An exotic cube consists of 9 vertices connected by arrows as follows:

• determines a ∂ -invariant 3-path v where:

 $v = e_{0237} - e_{0137} + e_{0157} - e_{0457} + e_{0867} - e_{0267} \in \Omega_3$

1.4 Examples of spaces Ω_p and H_p

Notation: For a vector space *A* over \mathbb{K} , we write $|A| := \dim_{\mathbb{K}} A$

1. Triangle as a digraph

- $\Omega_1 = \langle e_{01}, e_{02}, e_{12} \rangle$
- $\Omega_2 = \langle e_{012} \rangle = \mathcal{A}_2$
- $\ker \partial|_{\Omega_1} = \langle e_{01} e_{02} + e_{12} \rangle$ but $e_{01} e_{02} + e_{12} = \partial e_{012} \in \operatorname{Im} \partial_{\Omega_2}$ so that $H_1 = \{0\}$
- $H_p = \{0\}$ for all $p \ge 2$

2. Hexagon with diagonals

- $|\Omega_0| = 6$
- $|\Omega_1| = 8$
- Ω_2 is spanned by 2 squares:

$$\Omega_2 = \langle e_{013} - e_{023}, e_{014} - e_{024} \rangle$$

- $\Omega_p = \{0\}$ for all $p \ge 3$
- $H_1 = \langle e_{13} e_{53} + e_{54} e_{14} \rangle$

•
$$|H_1| = 1$$

- $H_p = \{0\}$ for all $p \ge 2$
- 3. Octahedron

- $|\Omega_0| = 6$
- $|\Omega_1| = 12$
- Ω_2 is spanned by 8 triangles:

 $\Omega_2 = \langle \, e_{024}, e_{034}, e_{025}, e_{035}, e_{124}, e_{134}, e_{125}, e_{135} \, \rangle$

- $|\Omega_2| = 8$
- $\Omega_p = \{0\}$ for all $p \ge 3$
- $H_2 = \langle e_{024} e_{034} e_{025} + e_{035} e_{124} + e_{134} + e_{125} e_{135} \rangle$
- $|H_2| = 1$

- $|H_p| = 0$ for p = 1 and $p \ge 3$
- 4. Octahedron with different orientation

- $\Omega_2 = \langle e_{024}, e_{025}, e_{014}, e_{015}, e_{234}, e_{235}, e_{134}, e_{135}, e_{013} e_{023} \rangle$
- $\Omega_3 = \langle e_{0234} e_{0134}, e_{0235} e_{0135} \rangle$
- $|\Omega_2| = 9$
- $|\Omega_3| = 2$
- $\Omega_p = \{0\}$ for all $p \ge 4$
- ker $\partial_{\Omega_2} = \langle u, v \rangle$ where:

$$u = e_{024} + e_{234} - e_{014} - e_{134} + (e_{013} - e_{023})$$
$$v = e_{025} + e_{235} - e_{015} - e_{135} + (e_{013} - e_{023})$$

• $H_2 = \{0\}$ because:

$$u = \partial (e_{0234} - e_{0134})$$
$$v = \partial (e_{0235} - e_{0135})$$

5. 3-cube

- $|\Omega_0| = 8$
- $|\Omega_1| = 12$
- Ω_2 is spanned by 6 squares:

$$\Omega_2 = \langle \, e_{013} - e_{023}, e_{015} - e_{045}, e_{026} - e_{046}, e_{137} - e_{157}, e_{237} - e_{267}, e_{457} - e_{467} \, \rangle$$

- hence $|\Omega_2| = 6$

• Ω₃ is spanned by one 3-cube:

 $\Omega_3 = \langle e_{0237} - e_{0137} + e_{0157} - e_{0457} + e_{0467} - e_{0267} \rangle$

- hence $|\Omega_3| = 1$
- $|\Omega_p| = 0$ for all $p \ge 4$
- $|H_p| = 0$ for all $p \ge 1$

Remark 1.11. Computations of spaces $\Omega_p(G)$ and $H_p(G)$ amount to computing ranks and null spaces of large matrices. For numerical computation of $H_p(G, \mathbb{F}_2)$, currently use a C++ program written by Chao Chen in 2012.

1.5 Structure of Ω_p

- Recall that $\Omega_0 = \langle e_i \rangle$ consists of all vertices and $\Omega_1 = \{e_{ij} : i \rightarrow j\}$ consists of all arrows
- What about higher Ω_p 's?

Proposition 1.12.

- 1. The space Ω_2 is spanned by all triangles e_{abc} , squares $e_{abc} e_{ab'c}$, and double arrows e_{aba}
- 2. $|\Omega_2| = |\mathcal{A}_2| s$ where s is the number of **semi-arrows** *i.e.*, pairs of vertices x, y such that $x \not\rightarrow y$ but $x \rightarrow z \rightarrow y$ for some intermediary vertex z.
- the triangles and double arrows are *always linearly independent*
- the squares can be *dependent*

Example:

For this digraph, we have 3 squares:

$$e_{013} - e_{023}$$
$$e_{043} - e_{013}$$
$$e_{023} - e_{043}$$

but their sum is 0 (so they are *dependent*)

• in this case, $|\Omega_2| = 2 = |\mathcal{A}_2| - s = 3 - 1$

Definition 1.13. X, Y : digraphs

A map of vertex sets $f : X \to Y$ is a **morphism of digraphs** if for any $a \to b \in X$ we have either:

1. $f(a) \rightarrow f(b) \in Y$; or

$$2. \ f(a) = f(b) \text{ in } Y$$

i.e., the image of an arrow is either an arrow or a vertex (same defn we're used to)

The **image** of a path $e_{i_0...i_p}$ is

$$f\left(e_{i_0\dots i_p}\right) := e_{f(i_0)\dots f(i_p)}$$

so that the image of an allowed path is either allowed or zero (that is also allowed.

- it is clear that $f \circ \partial = \partial \circ f$ so that morphism images of ∂ -invariant paths are also ∂ -invariant
- Some possible morphism images of a square $e_{013} e_{023}$:

- a double arrow e_{aba}

Thus, we can rephrase the proposition as follows:

Proposition 1.14. (rephrasing of proposition (1))

 Ω_2 is spanned by squares and their morphism images. *i.e.*, squares are **basic shapes** of Ω_2 .

Open Problem: Describe all basic shapes in Ω_3 and in general, in Ω_p for p > 3.