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Random graphs

What are random graphs?

a set of graphs + some (measurable) uncertainty

a set of graphs + a probability distribution
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Probability on a finite set

• Ω : a finite set

• X : Ω→ R : discrete random variable

• P : Ω→ [0, 1] : a probability mass function on Ω

.
∑

ω∈Ω P(X = ω) = 1
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Random subgraphs

• E : a finite set

• P(E) : power set of E

• A random subset S ⊆ E is a random element of P(E)
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Generating polynomials

• Well-developed ([BBL09], [ALGV19]) dictionary

{multiaffine polynomials} ←→ {probability distributions}

• def. For X a random subset, its generating polynomial is

gX :=
∑
S⊆E

P(X = S)xS

where xS =
∏

i∈S xi and x = (xe)e∈E
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A foundational random graph model: Erdős-Rényi

• G = (V ,E) : finite graph

• Erdős-Rényi graphs G(p) for 0 < p < 1

1. Start with vertices V

2. Draw an edge between each pair of vertices with independent

probability p

• Limitations: independence
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Erdős-Rényi graphs

• For S ⊆ E , P(X = S) = p|S|(1− p)|E|−|S|

Proposition

If X is Erdős-Rényi, then gX =
∏

e∈E(pxe + (1− p)).
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Enhancing the dictionary
{multiaffine polynomials} ←→ {probability distributions}

Operations

• Multiplication←→ disjoint union

. P(X tY = S t T) := P(X = S)P(Y = T)

. gX · gY = gXtY

• Partial differentiation←→ conditioning

. ∂igX =
∑

S3i P(X = S)xS\{i}

. i.e., X 7−→ (X | i ∈ S)

• Specialization←→ conditioning

. gX |xi=0 =
∑

S 63i P(X = S)xS

. i.e., X 7−→ (X | i /∈ S)
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Enhancing the dictionary

Properties

• Positive coefficients←→ positive distribution

• Product of linear factors←→ Erdős-Rényi

• Stable←→ strongly Rayleigh/negative dependence

• Lorentzian←→ a weaker form of negative dependence
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Irreducible generating polynomials

• V : finite set

• E :=
(V

k
)

: all subsets of V of size k

• Sym(V ) ⊆ Sym(E)

Theorem 1

If supp(X) = E and gX is Sym(V )-symmetric, then either:

1. gX =
∏

e∈E(pxe + (1− p)) for some p ∈ (0, 1); or

2. gX is irreducible over R[xe : e ∈ E ].
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Dependence

How do we define a joint distribution where the random variables are

not independent?

• Markov property:

P(Xe = xe | Xe = xe) = P(Xe = xe | XNe = xNe)

• Markov neighbourhood: Adjacent edges are dependent:

Ne = {f ∈ E : e ∼ f }

e

• Neighbourhood clique C ⊆ E : For all e, f ∈ C , e ∼ f
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Markov (exponential) random graphs

• G = (V ,E) : finite (undirected) graph with no self-loops

• S ⊆ E  GS = (V ,S) is the spanning subgraph on S

• def. The Markov random graph model on P(E) is:

P(X = GS) ∝ exp

 1

T

βt(C3,GS) +
∑
k≥1

βkt(Sk ,GS)


. β, βk ∈ R, T > 0 :

parameters

. t(H ,GS) : the

homomorphism density of H
in GS 3-star S3triangle C3
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Homomorphism densities

P(X = GS) ∝ exp

 1

T

βt(C3,GS) +
∑
k≥1

βkt(Sk ,GS)


• H ,G : connected simple graphs

• The homomorphism density of H in G is

t(H ,G) :=
|Hom(H ,G)|
|V (G)||V (H)|

• |Hom(S1,G)| = 2|E(G)|

• |Hom(C3,G)| = 6 ·#(triangles in G)

• Model can be defined for any real-valued function of the degree

sequence of GS (e.g., subgraph counts)
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The Markov-Gibbs correspondence

{positive Markov random fields} ←→ {finite Gibbs distributions}

Hammersley-Clifford theorem (1971)

A collection of positive random variables satisfy a Markov property if

and only if it is a (finite) Gibbs distribution:

P(X = S) ∝ exp (−E(S))

where E is an energy function that encodes the neighbourhood

dependencies

• Every finite Gibbs distribution is positive

• Positivity relevant to hypotheses of irreducibility result
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Stable polynomials

• def. A nonzero polynomial g ∈ R[x] is (real) stable if it does not

have any roots in the open upper half of the complex plane

HE = {x ∈ CE : Im(xe) > 0 for all e}.

• def. A probability distribution is strongly Rayleigh if gX is stable.

Proposition [Brä07]

A multiaffine polynomial g ∈ R[x] is stable if and only if for all x ∈ RE

and i, j ∈ E such that i 6= j ,

∂2g
∂xi∂xj

(x)g(x) ≤ ∂g
∂xi

(x) ∂g
∂xj

(x)
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Negative dependence

• Modelling repelling particles

• Pairwise negative correlation: For i 6= j ,

P(i, j ∈ S) ≤ P(i ∈ S)P(j ∈ S)

• Negative lattice condition: For S ,T ⊆ E ,

P(S ∪ T)P(S ∩ T) ≤ P(S)P(T)

S ∪ T

S T

S ∩ T
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Negative dependence and stability

Proposition [BBL09]

Strongly Rayleigh probability measures satisfy the strongest form of

negative dependence.

• Erdős-Rényi graphs: gX =
∏

e∈E(pxe + (1− p))

• Negatively dependent probability measures have applications to

determinantal point processes and machine learning

([AGV21, KT12])

• Identifying negatively dependent measures ([Pem00])
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Strongly Rayleigh Markov random graphs: necessary

conditions
Theorem 2

If G = (V ,E) has at least one triangle and P is a strongly Rayleigh

Markov random graph on G , then the triangle and 2-star parameters β

and β2 are such that β ≤ −β2.

Proof:

• Idea: use the negative lattice condition with S = {i, j} and

T = {k} where S ∪ T = {i, j, k} is a triangle in G

k

ji
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Strongly Rayleigh Markov random graphs: necessary

conditions

P(S ∪ T)P(S ∩ T) ≤ P(S)P(T)

P(4)P(∅) ≤ P(S2)P(S1)

• For ease of notation: Xi := exp
(

βi
Tni+1

)
and Y := exp

(
β

Tn3

)
• e.g., P(4) ∝ X6

1X12
2 Y 6

X6
1X12

2 Y 6 ≤ X4
1X6

2X2
1

Y 6 ≤ X−6
2

Therefore, exp
(

6β
Tn3

)
≤ exp

(
−6β2

Tn3

)
so that β ≤ −β2.
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Strongly Rayleigh Markov random graphs: characterizations

Theorem 3

The edge-triangle Markov random graph model on G = K3 is strongly

Rayleigh if and only if the triangle parameter β = 0.

Theorem 4

The edge parameter β1 in a Markov exponential random graph model

on a finite graph G does not affect whether or not the model is strongly

Rayleigh.
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Lorentzian polynomials

• def. A subset J ⊆ NE is M -convex when it satisfies the symmetric

basis exchange property:

For any α, β ∈ J and an index i such that αi > βi , there exists an

index j such that αj < βj and α− ei + ej ∈ J and β− ej + ei ∈ J

Examples

. G = (V ,E) : a finite connected graph

I J = {spanning trees of G} ⊆ {0, 1}E

. M = matroid on a finite ground set E
I J = {bases of M}

. J = ∆d
E ⊆ NE

I d th discrete simplex
I Vectors with coordinate sum d
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Lorentzian polynomials

• def. The support of a polynomial g ∈ R[x] is

supp(g) := {S ∈ NE : cS 6= 0} ⊆ NE

where g(x) =
∑

S∈NE cSxS

• def. A multiaffine polynomial g ∈ R[x] is called positive if

supp(g) = {0, 1}E
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Lorentzian polynomials

• Notation

. H d
E : homogeneous polynomials of degree d in variables (xe)e∈E

. M d
E ⊆ H d

E : polynomials in H d
E whose supports are M -convex

. L2
E ⊆ H 2

E : quadratic forms with non-negative coefficients that

have at most one positive eigenvalue

• def. A homogeneous polynomial h ∈ H d
E is Lorentzian if its

support is M -convex and ∂ih ∈ Ld−1
E for all i ∈ E . i.e., for d > 2:

Ld
E := {h ∈ M d

E : ∂ih ∈ Ld−1
E for all i ∈ E}
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Lorentzian distributions

• def. The homogenization of gX is

hX(z, x) :=
∑
S⊆E

P(X = S)z |E|−|S|xS

• def. A probability distribution is Lorentzian if hX is Lorentzian.

Proposition [BH20]

If P is strongly Rayleigh, then P is Lorentzian.
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Lorentzian negative dependence

Proposition [BH20]

Lorentzian probability measures are 2-Rayleigh: for all x ∈ RE
≥0 and

i, j ∈ E such that i 6= j ,

∂2g
∂xi∂xj

(x)g(x) ≤ 2

(
∂g
∂xi

(x) ∂g
∂xj

(x)
)

• Lorentzian is weaker than stability (but easier to test)
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Lorentzian Markov random graphs

Proposition

If P is positive, then the support of hX is M -convex.

• e.g., finite Gibbs distributions on a power set have M -convex

support

31 / 42



Lorentzian Markov random graphs: characterizations

Theorem 5

The edge-triangle Markov random graph model on G = K3 is

Lorentzian if and only if the triangle parameter β ≤ 0.

Theorem 6

The edge parameter β1 in a Markov exponential random graph model

on a finite graph G does not affect whether or not the model is

Lorentzian.
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Lorentzian Markov random graphs: edges
Proof:

• Let P be the Markov random graph model on G = (V ,E)

hP(z, x) =
∑
S⊆E

P(S)xSz |E|−|S|

=
∑
S⊆E

X2|S|
1

∏
i≥2

X |Hom(Si ,GS)|
i Y |Hom(C3,GS)|xSz |E|−|S|

• Change of variables z 7→ zX2
1

hP(X2
1 z, x) =

∑
S⊆E

X2|S|
1

∏
i≥2

X |Hom(Si ,GS)|
i Y |Hom(C3,GS)|

· xS(zX2
1 )

|E|−|S|
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Lorentzian Markov random graphs: edges

Then,

hP(X2
1 z, x) = X2|E|

1

∑
S⊆E

∏
i≥2

X |Hom(Si ,GS)|
i Y |Hom(C3,GS)|xSz |E|−|S|

• Positive scaling does not affect the signatures of any quadratic forms
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A Lorentzian algorithm for Markov random graphs

• Determining whether the Lorentzian property holds is about

identifying the signature of symmetric matrices

• Uses the Schur complement of a symmetric block matrix

• Can be generalized and implemented for G = Kn
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Lorentzian characterizations for G = K4

• Using subgraph counts instead of homomorphism densities

Theorem 7

Suppose P is the Markov random graph model on K4 and the 2-star

parameter β2 = 0. Then, P is Lorentzian if and only if the 3-star and

triangle parameters β3, β satisfy

T ln

(
3−
√
3

4

)
≤β3 ≤ 0 and

−T ln 2− β3 ≤β ≤ 0
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Lorentzian characterizations for G = K4

Theorem 8

Suppose P is the Markov random graph model on K4 and the 3-star

parameter β3 = 0. Then, P is Lorentzian if and only if the 2-star and

triangle parameters β2, β satisfy

−T ln 2 ≤ β2 ≤ 0 and

−T ln 2− β2 ≤ β ≤ −β2
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Minors for β3 = 0

g4(X2,Y ) = 3X2
2Y 2 + 2X2

2Y +

3X2
2 − 6X2Y − 6X2 + 3

g5(X2,Y ) = 3X2
2Y 2 + 2X2

2Y +

3X2
2 − 6X2Y − 5X2 + 3
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Thank you!
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