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Random graphs

What are random graphs?
a set of graphs + some (measurable) uncertainty

a set of graphs + a probability distribution
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Probability on a finite set

* ) afinite set

« X : QQ — R: discrete random variable
* P:Q —[0,1]: aprobability mass function on §2
> ZwEQ PX=w)=1
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Random subgraphs

© B afinite set
© P(E): power set of E

* A random subset S C E'is a random element of P(E)
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Generating polynomials

* Well-developed ([ Inl ]) dictionary

{multiaffine polynomials} «— {probability distributions}

¢ def. For X a random subset, its generating polynomial is

gx =Y P(X =8)x"

SCE

where x% = [Licgziand x = (2c)ecE
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A foundational random graph model: Erd&s-Rényi

* G=(V,E): finite graph
* Erd&s-Rényi graphs G(p) for 0 < p < 1
|. Start with vertices V

o

2. Draw an edge between each pair of vertices with independent

probability p

* Limitations: independence
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Erd&s-Rényi graphs

If X is Erdés-Rényi, then gx = ] .cg(pze + (1 — p)).
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Enhancing the dictionary
{multiaffine polynomials} «— {probability distributions}

Operations

* Multiplication «— disjoint union
> PXUY=SUT)=PX=8)P(Y=T)
P gx gy = gxuy

¢ Partial differentiation <— conditioning
> 0igx = Y g5, P(X = S)x S\
>ie, X— (X ]i€l)

* Specialization <— conditioning
> gxla=0 = D5 P(X = S)x®
e, X — (X |i¢9)
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Enhancing the dictionary

Properties

* Positive coefficients «— positive distribution
* Product of linear factors <— Erd&s-Rényi
¢ Stable <— strongly Rayleigh/negative dependence

¢ Lorentzian <— a weaker form of negative dependence
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Irreducible generating polynomials

* V: finite set
c B = (‘k/) . all subsets of V of size k
© Sym(V) C Sym(E)

If supp(X) = F and gx is Sym(V')-symmetric, then either:

I gx = [lecp(pze + (1 — p)) for some p € (0,1); or

2. gx isirreducible over R[z, : e € E].
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Overview

2. Encoding dependence in random graphs
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Dependence

How do we define a joint distribution where the random variables are

not independent?

* Markov property:
P(X.=1.| Xe =12e) = P(Xe =z | Xn, = 2n,)
* Markov neighbourhood: Adjacent edges are dependent:

Ne:{fEE:eNf}

e

* Neighbourhood clique C' C E: Foralle,f € C,e~ f
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Markov (exponential) random graphs

G = (V, E): finite (undirected) graph with no self-loops

S C E~ Gg = (V,S)isthe spanning subgraph on S

def. The Markov random graph model on P(E) is:

1
P(X = Gg) ocexp | — | J1(Cy, Gg) + > Bit(Sk, Gs)
k>1

\Y%

5,0, €R T">0:

parameters

v

t(H, Gg): the
homomorphism density of H
in Gg triangle Cs 3-star S5
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Homomorphism densities

P(X = Gs) ocexp | o  B(Cy, Gs) + 3 5ut(St. Gs)

k>1

* H, G : connected simple graphs

* The homomorphism density of H in G'is
__ |Hom(H, G)|
G = T
* [Hom(5y, G)| = 2[E(G)

* |Hom(Cs, G)| = 6 - #(triangles in G)

¢ Model can be defined for any real-valued function of the degree

sequence of Gg (e.g, subgraph counts)
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The Markov-Gibbs correspondence

{positive Markov random fields} <— {finite Gibbs distributions}

Hammersley-Clifford theorem (1971)

A collection of positive random variables satisfy a Markov property if
and only if it is a (finite) Gibbs distribution:

P(X =15) xexp(—£(9))

where € is an energy function that encodes the neighbourhood

dependencies

* Every finite Gibbs distribution is positive

* Positivity relevant to hypotheses of irreducibility result

177142



Overview

3. Strongly Rayleigh Markov random graphs
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Stable polynomials

+ def. A nonzero polynomial g € R[x] is (real) stable if it does not
have any roots in the open upper half of the complex plane

HE = {x € CF :Im(z,) > 0forall e}.
* def. A probability distribution is strongly Rayleigh if gx is stable.

Proposition

A multiaffine polynomial g € R[x] is stable if and only if for all x € R¥
and 7,7 € E such that i # j,

0%g dg dg
< -7
(‘3:@8:@- (X)g(x) — Ox; . 8$j (X)
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Negative dependence
* Modelling repelling particles

* Pairwise negative correlation: For ¢ # j,
P(i,jeS)<PieS)P(j€S)

* Negative lattice condition: For S, T' C F,
P(SUT)P(SNT)<P(S)P(T)
SuT
S T

SNT
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Negative dependence and stability

Proposition

Strongly Rayleigh probability measures satisfy the strongest form of

negative dependence.

* Erdés-Rényi graphs: gx = [[.c p(pze + (1 = p))
* Negatively dependent probability measures have applications to

determinantal point processes and machine learning
([AGV2I, KT12])

¢ ldentifying negatively dependent measures ([Pem00])
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Strongly Rayleigh Markov random graphs: necessary
conditions

Theorem 2

If G = (V, E) has at least one triangle and P is a strongly Rayleigh
Markov random graph on G, then the triangle and 2-star parameters 3

and B are such that § < — 3.

Proof:
* |dea: use the negative lattice condition with S = {7, j} and

T = {k} where SU T = {i,j, k} isatriangle in G
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Strongly Rayleigh Markov random graphs: necessary

conditions

P(SUT)P(SN T) < P(S)P(T)
P(A)P(2) < P(S2)P(5)

» For ease of notation: X; := exp ( ﬁZH) and Y :=exp (%)
ceg, P(A) oc XOX)2Y©
XPX,? V0 < XPX§X?
ys < X2—6

Therefore, exp (%) < exp ( 62) sothat 8 < —f3,.
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Strongly Rayleigh Markov random graphs: characterizations

The edge-triangle Markov random graph model on G' = K3 is strongly

Rayleigh if and only if the triangle parameter 5 = 0.

Theorem 4

The edge parameter ;1 in a Markov exponential random graph model
on a finite graph G does not affect whether or not the model is strongly

Rayleigh.
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4. Lorentzian polynomials and distributions
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Lorentzian polynomials

« def. A subset J C N¥ is M-convex when it satisfies the symmetric
basis exchange property:
Forany a, 8 € J and an index ¢ such that a;; > (3, there exists an

index j suchthat aj < Bjanda—e;+e;j € Jand B —ej+e; € J

> G = (V,E): afinite connected graph
> J = {spanning trees of G} C {0,1}”

> M = matroid on a finite ground set
> J = {basesof M}

> J =A% CNF
> " discrete simplex

P Vectors with coordinate sum d
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Lorentzian polynomials

+ def. The support of a polynomial g € R[x] is
supp(g) := {S € N7 : ¢cg #0} CN”

where g(x) = > gone csx

* def. A multiaffine polynomial g € R[x] is called positive if
supp(g) = {0, 1}7
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Lorentzian polynomials

* Notation

> HE: homogeneous polynomials of degree d in variables (7.) cc &
> M@ C HE: polynomials in H whose supports are M-convex

> L% C H%: quadratic forms with non-negative coefficients that

have at most one positive eigenvalue

* def. A homogeneous polynomial h € Hg is Lorentzian if its

support is M-convex and 0;h € L%‘l foralli e E.ie, ford > 2

LY :={he ME:9;hc L4 forallic B}
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Lorentzian distributions

¢ def. The homogenization of gx is

hx(z,x) = Z P(X = 9)zIPI-181xS
SCE

* def. A probability distribution is Lorentzian if hx is Lorentzian.

Proposition

If P is strongly Rayleigh, then P is Lorentzian.
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Lorentzian negative dependence

Proposition

Lorentzian probability measures are 2-Rayleigh: for all x € Rgo and

1,j € E suchthat i # j,

0%g dg . . 0g
) <2 (L2 )

¢ Lorentzian is weaker than stability (but easier to test)
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Lorentzian Markov random graphs

If P is positive, then the support of hy is M-convex.

* e.g, finite Gibbs distributions on a power set have M-convex

support
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Lorentzian Markov random graphs: characterizations

The edge-triangle Markov random graph model on G = K3 is

Lorentzian if and only if the triangle parameter 8 < 0.

Theorem 6

The edge parameter 3 in a Markov exponential random graph model
on a finite graph G does not affect whether or not the model is

Lorentzian.
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Lorentzian Markov random graphs: edges
Proof:

* Let P be the Markov random graph model on G = (V, E)

hp(z,x) = ZP(S)XSAEHSI

SCE
_ Z X12|S‘HXZ!HOm(Si,GS)\Y|Hom(C3,GS)|XSz|E|—\S|
SCE i>2

+ Change of variables z — zX?

hp(XIsz x) = Z X12|S| HXgHom(Si’GS)l Y\Hom(Cg,GS)\
SCE i>2

x9(zX2) -1
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Lorentzian Markov random graphs: edges

Then,

hP(X%Z,X) = X12|E‘ Z HXlHom(ShGSN Y\HOm(Cg,GS)\xSZ|E|—|S\
SCEi>2

* Positive scaling does not affect the signatures of any quadratic forms

O
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A Lorentzian algorithm for Markov random graphs

* Determining whether the Lorentzian property holds is about

identifying the signature of symmetric matrices
* Uses the Schur complement of a symmetric block matrix

* Can be generalized and implemented for G = K,

35/42



Lorentzian characterizations for G = K4

¢ Using subgraph counts instead of homomorphism densities

Suppose P is the Markov random graph model on Ky and the 2-star

parameter B2 = 0. Then, P is Lorentzian if and only if the 3-star and

triangle parameters (s, 3 satisfy

Tln (3 — \/§> <B3 < 0and

4

—Tln2—-p3<f<0
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Lorentzian characterizations for G = K4

Suppose P is the Markov random graph model on Ky and the 3-star

parameter 33 = 0. Then, P is Lorentzian if and only if the 2-star and

triangle parameters (3, /3 satisfy

—TIn2 < By <0and
—TIn2—Py < B <P
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Minors for 3 = 0
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Thank youl
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