Generating polynomials of exponential random graphs

Mohabat Tarkeshian

Western University

August I8, 2023

Overview

I. Random graphs
2. Encoding dependence in random graphs
3. Strongly Rayleigh Markov random graphs
4. Lorentzian polynomials and distributions

Overview

I. Random graphs
2. Encoding dependence in random graphs
3. Strongly Rayleigh Markov random graphs
4. Lorentzian polynomials and distributions

Random graphs

What are random graphs?

a set of graphs + some (measurable) uncertainty
a set of graphs + a probability distribution

Probability on a finite set

- Ω : a finite set
- $X: \Omega \rightarrow \mathbb{R}$: discrete random variable
- $P: \Omega \rightarrow[0,1]$: a probability mass function on Ω
$\triangleright \sum_{\omega \in \Omega} P(X=\omega)=1$

Random subgraphs

- E : a finite set
- $\mathcal{P}(E)$: power set of E
- A random subset $S \subseteq E$ is a random element of $\mathcal{P}(E)$

Generating polynomials

- Well-developed ([BBL09], [ALGV| 9]) dictionary
\{multiaffine polynomials\} \longleftrightarrow \{probability distributions\}
- def. For X a random subset, its generating polynomial is

$$
g_{X}:=\sum_{S \subseteq E} P(X=S) \mathbf{x}^{S}
$$

where $\mathbf{x}^{S}=\prod_{i \in S} x_{i}$ and $\mathbf{x}=\left(x_{e}\right)_{e \in E}$

A foundational random graph model: Erdős-Rényi

- $G=(V, E)$: finite graph
- Erdős-Rényi graphs $G(p)$ for $0<p<1$
I. Start with vertices V

2. Draw an edge between each pair of vertices with independent probability p

- Limitations: independence

Erdős-Rényi graphs

- For $S \subseteq E, P(X=S)=p^{|S|}(1-p)^{|E|-|S|}$

Proposition

If X is Erdős-Rényi, then $g_{X}=\prod_{e \in E}\left(p x_{e}+(1-p)\right)$.

Enhancing the dictionary

\{multiaffine polynomials\} \longleftrightarrow \{probability distributions\}
Operations

- Multiplication \longleftrightarrow disjoint union

$$
\begin{aligned}
& \triangleright P(X \sqcup Y=S \sqcup T):=P(X=S) P(Y=T) \\
& \triangleright g_{X} \cdot g_{Y}=g_{X \sqcup Y}
\end{aligned}
$$

- Partial differentiation \longleftrightarrow conditioning

$$
\begin{aligned}
& \triangleright \partial_{i} g_{X}=\sum_{S \ni i} P(X=S) \mathbf{x}^{S \backslash\{i\}} \\
& \triangleright \text { i.e., } X \longmapsto(X \mid i \in S)
\end{aligned}
$$

- Specialization \longleftrightarrow conditioning

$$
\begin{aligned}
& \left.\triangleright g_{X}\right|_{x_{i}=0}=\sum_{S \ngtr i} P(X=S) \mathbf{x}^{S} \\
& \triangleright \text { i.e., } X \longmapsto(X \mid i \notin S)
\end{aligned}
$$

Enhancing the dictionary

Properties

- Positive coefficients \longleftrightarrow positive distribution
- Product of linear factors \longleftrightarrow Erdős-Rényi
- Stable \longleftrightarrow strongly Rayleigh/negative dependence
- Lorentzian \longleftrightarrow a weaker form of negative dependence

Irreducible generating polynomials

- V : finite set
- $E:=\binom{V}{k}$: all subsets of V of size k
- $\operatorname{Sym}(V) \subseteq \operatorname{Sym}(E)$

Theorem I

If $\operatorname{supp}(X)=E$ and g_{X} is $\operatorname{Sym}(V)$-symmetric, then either:

1. $g_{X}=\prod_{e \in E}\left(p x_{e}+(1-p)\right)$ for some $p \in(0,1)$; or
2. g_{X} is irreducible over $\mathbb{R}\left[x_{e}: e \in E\right]$.

Overview

I. Random graphs

2. Encoding dependence in random graphs

3. Strongly Rayleigh Markov random graphs

4. Lorentzian polynomials and distributions

Dependence

How do we define a joint distribution where the random variables are

not independent?

- Markov property:

$$
P\left(X_{e}=x_{e} \mid X_{\bar{e}}=x_{\bar{e}}\right)=P\left(X_{e}=x_{e} \mid X_{N_{e}}=x_{N_{e}}\right)
$$

- Markov neighbourhood: Adjacent edges are dependent:

$$
N_{e}=\{f \in E: e \sim f\}
$$

- Neighbourhood clique $C \subseteq E$: For all $e, f \in C, e \sim f$

Markov (exponential) random graphs

- $G=(V, E)$: finite (undirected) graph with no self-loops
- $S \subseteq E \rightsquigarrow G_{S}=(V, S)$ is the spanning subgraph on S
- def. The Markov random graph model on $\mathcal{P}(E)$ is:

$$
P\left(X=G_{S}\right) \propto \exp \left(\frac{1}{T}\left(\beta t\left(C_{3}, G_{S}\right)+\sum_{k \geq 1} \beta_{k} t\left(S_{k}, G_{S}\right)\right)\right)
$$

$\triangleright \beta, \beta_{k} \in \mathbb{R}, T>0:$ parameters
$\triangleright t\left(H, G_{S}\right)$: the homomorphism density of H in G_{S}

triangle C_{3}

Homomorphism densities

$$
P\left(X=G_{S}\right) \propto \exp \left(\frac{1}{T}\left(\beta t\left(C_{3}, G_{S}\right)+\sum_{k \geq 1} \beta_{k} t\left(S_{k}, G_{S}\right)\right)\right)
$$

- H, G : connected simple graphs
- The homomorphism density of H in G is

$$
t(H, G):=\frac{|\operatorname{Hom}(H, G)|}{|V(G)|^{|V(H)|}}
$$

- $\left|\operatorname{Hom}\left(S_{1}, G\right)\right|=2|E(G)|$
- $\left|\operatorname{Hom}\left(C_{3}, G\right)\right|=6 \cdot \#($ triangles in $G)$
- Model can be defined for any real-valued function of the degree sequence of G_{S} (e.g., subgraph counts)

The Markov-Gibbs correspondence

\{positive Markov random fields\} \longleftrightarrow \{finite Gibbs distributions\}

Hammersley-Clifford theorem (I97I)

A collection of positive random variables satisfy a Markov property if and only if it is a (finite) Gibbs distribution:

$$
P(X=S) \propto \exp (-\mathcal{E}(S))
$$

where \mathcal{E} is an energy function that encodes the neighbourhood dependencies

- Every finite Gibbs distribution is positive
- Positivity relevant to hypotheses of irreducibility result

Overview

I. Random graphs
 2. Encoding dependence in random graphs

3. Strongly Rayleigh Markov random graphs
4. Lorentzian polynomials and distributions

Stable polynomials

- def. A nonzero polynomial $g \in \mathbb{R}[\mathbf{x}]$ is (real) stable if it does not have any roots in the open upper half of the complex plane $\mathcal{H}^{E}=\left\{\mathbf{x} \in \mathbb{C}^{E}: \operatorname{lm}\left(x_{e}\right)>0\right.$ for all $\left.e\right\}$.
- def. A probability distribution is strongly Rayleigh if g_{X} is stable.

Proposition [Brä07]

A multiaffine polynomial $g \in \mathbb{R}[\mathbf{x}]$ is stable if and only if for all $\mathbf{x} \in \mathbb{R}^{E}$ and $i, j \in E$ such that $i \neq j$,

$$
\frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}(\mathbf{x}) g(\mathbf{x}) \leq \frac{\partial g}{\partial x_{i}}(\mathbf{x}) \frac{\partial g}{\partial x_{j}}(\mathbf{x})
$$

Negative dependence

- Modelling repelling particles
- Pairwise negative correlation: For $i \neq j$,

$$
P(i, j \in S) \leq P(i \in S) P(j \in S)
$$

- Negative lattice condition: For $S, T \subseteq E$,

$$
P(S \cup T) P(S \cap T) \leq P(S) P(T)
$$

Negative dependence and stability

Proposition [BBL09]

Strongly Rayleigh probability measures satisfy the strongest form of negative dependence.

- Erdős-Rényi graphs: $g_{X}=\prod_{e \in E}\left(p x_{e}+(1-p)\right)$
- Negatively dependent probability measures have applications to determinantal point processes and machine learning ([AGV2 I , KT I 2])
- Identifying negatively dependent measures ([Pem00])

Strongly Rayleigh Markov random graphs: necessary

conditions

Theorem 2

If $G=(V, E)$ has at least one triangle and P is a strongly Rayleigh
Markov random graph on G, then the triangle and 2 -star parameters β and β_{2} are such that $\beta \leq-\beta_{2}$.

Proof:

- Idea: use the negative lattice condition with $S=\{i, j\}$ and $T=\{k\}$ where $S \cup T=\{i, j, k\}$ is a triangle in G

Strongly Rayleigh Markov random graphs: necessary

conditions

$$
\begin{aligned}
P(S \cup T) P(S \cap T) & \leq P(S) P(T) \\
P(\triangle) P(\varnothing) & \leq P\left(S_{2}\right) P\left(S_{1}\right)
\end{aligned}
$$

- For ease of notation: $X_{i}:=\exp \left(\frac{\beta_{i}}{T n^{i+1}}\right)$ and $Y:=\exp \left(\frac{\beta}{T n^{3}}\right)$
- e.g., $P(\triangle) \propto X_{1}^{6} X_{2}^{12} Y^{6}$

$$
\begin{aligned}
X_{1}^{6} X_{2}^{12} Y^{6} & \leq X_{1}^{4} X_{2}^{6} X_{1}^{2} \\
Y^{6} & \leq X_{2}^{-6}
\end{aligned}
$$

Therefore, $\exp \left(\frac{6 \beta}{T n^{3}}\right) \leq \exp \left(\frac{-6 \beta_{2}}{T n^{3}}\right)$ so that $\beta \leq-\beta_{2}$.

Strongly Rayleigh Markov random graphs: characterizations

Theorem 3

The edge-triangle Markov random graph model on $G=K_{3}$ is strongly Rayleigh if and only if the triangle parameter $\beta=0$.

Theorem 4

The edge parameter β_{1} in a Markov exponential random graph model on a finite graph G does not affect whether or not the model is strongly Rayleigh.

Overview

I. Random graphs

2. Encoding dependence in random graphs
3. Strongly Rayleigh Markov random graphs
4. Lorentzian polynomials and distributions

Lorentzian polynomials

- def. A subset $J \subseteq \mathbb{N}^{E}$ is M-convex when it satisfies the symmetric basis exchange property:

For any $\alpha, \beta \in J$ and an index i such that $\alpha_{i}>\beta_{i}$, there exists an index j such that $\alpha_{j}<\beta_{j}$ and $\alpha-e_{i}+e_{j} \in J$ and $\beta-e_{j}+e_{i} \in J$

Examples

$\triangleright G=(V, E):$ a finite connected graph

- $J=\{$ spanning trees of $G\} \subseteq\{0,1\}^{E}$
$\triangleright M=$ matroid on a finite ground set E
- $J=\{$ bases of $M\}$
$\triangleright J=\Delta_{E}^{d} \subseteq \mathbb{N}^{E}$
- $d^{\text {th }}$ discrete simplex
- Vectors with coordinate sum d

Lorentzian polynomials

- def. The support of a polynomial $g \in \mathbb{R}[\mathbf{x}]$ is

$$
\operatorname{supp}(g):=\left\{S \in \mathbb{N}^{E}: c_{S} \neq 0\right\} \subseteq \mathbb{N}^{E}
$$

where $g(\mathbf{x})=\sum_{S \in \mathbb{N}^{E}} c_{S} \mathbf{x}^{S}$

- def. A multiaffine polynomial $g \in \mathbb{R}[\mathbf{x}]$ is called positive if

$$
\operatorname{supp}(g)=\{0,1\}^{E}
$$

Lorentzian polynomials

- Notation
$\triangleright H_{E}^{d}$: homogeneous polynomials of degree d in variables $\left(x_{e}\right)_{e \in E}$
$\triangleright M_{E}^{d} \subseteq H_{E}^{d}$: polynomials in H_{E}^{d} whose supports are M-convex
$\triangleright L_{E}^{2} \subseteq H_{E}^{2}$: quadratic forms with non-negative coefficients that have at most one positive eigenvalue
- def. A homogeneous polynomial $h \in H_{E}^{d}$ is Lorentzian if its support is M-convex and $\partial_{i} h \in L_{E}^{d-1}$ for all $i \in E$. i.e., for $d>2$:

$$
L_{E}^{d}:=\left\{h \in M_{E}^{d}: \partial_{i} h \in L_{E}^{d-1} \text { for all } i \in E\right\}
$$

Lorentzian distributions

- def. The homogenization of g_{X} is

$$
h_{X}(z, \mathbf{x}):=\sum_{S \subseteq E} P(X=S) z^{|E|-|S|} \mathbf{x}^{S}
$$

- def. A probability distribution is Lorentzian if h_{X} is Lorentzian.

Proposition [BH20]

If P is strongly Rayleigh, then P is Lorentzian.

Lorentzian negative dependence

Proposition [BH20]

Lorentzian probability measures are 2-Rayleigh: for all $\mathbf{x} \in \mathbb{R}_{\geq 0}^{E}$ and $i, j \in E$ such that $i \neq j$,

$$
\frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}(\mathbf{x}) g(\mathbf{x}) \leq 2\left(\frac{\partial g}{\partial x_{i}}(\mathbf{x}) \frac{\partial g}{\partial x_{j}}(\mathbf{x})\right)
$$

- Lorentzian is weaker than stability (but easier to test)

Lorentzian Markov random graphs

Proposition

If P is positive, then the support of h_{X} is M-convex.

- e.g., finite Gibbs distributions on a power set have M-convex support

Lorentzian Markov random graphs: characterizations

Theorem 5

The edge-triangle Markov random graph model on $G=K_{3}$ is
Lorentzian if and only if the triangle parameter $\beta \leq 0$.

Theorem 6

The edge parameter β_{1} in a Markov exponential random graph model on a finite graph G does not affect whether or not the model is
Lorentzian.

Lorentzian Markov random graphs: edges

Proof:

- Let P be the Markov random graph model on $G=(V, E)$

$$
\begin{aligned}
h_{P}(z, \mathbf{x}) & =\sum_{S \subseteq E} P(S) \mathbf{x}^{S} z^{|E|-|S|} \\
& =\sum_{S \subseteq E} X_{1}^{2|S|} \prod_{i \geq 2} X_{i}^{\left|\operatorname{Hom}\left(S_{i}, G_{S}\right)\right|} Y^{\left|\operatorname{Hom}\left(C_{3}, G_{S}\right)\right|} \mathbf{x}^{S} z^{|E|-|S|}
\end{aligned}
$$

- Change of variables $z \mapsto z X_{1}^{2}$

$$
\begin{aligned}
h_{P}\left(X_{1}^{2} z, \mathbf{x}\right) & =\sum_{S \subseteq E} X_{1}^{2|S|} \prod_{i \geq 2} X_{i}^{\left|\operatorname{Hom}\left(S_{i}, G_{S}\right)\right|} Y^{\left|\operatorname{Hom}\left(C_{3}, G_{S}\right)\right|} \\
& \cdot \mathbf{x}^{S}\left(z X_{1}^{2}\right)^{|E|-|S|}
\end{aligned}
$$

Lorentzian Markov random graphs: edges

Then,

$$
h_{P}\left(X_{1}^{2} z, \mathbf{x}\right)=X_{1}^{2|E|} \sum_{S \subseteq E} \prod_{i \geq 2} X_{i}^{\left|\operatorname{Hom}\left(S_{i}, G_{S}\right)\right|} Y^{\left|\operatorname{Hom}\left(C_{3}, G_{S}\right)\right|} \mathbf{x}^{S} z^{|E|-|S|}
$$

- Positive scaling does not affect the signatures of any quadratic forms

A Lorentzian algorithm for Markov random graphs

- Determining whether the Lorentzian property holds is about identifying the signature of symmetric matrices
- Uses the Schur complement of a symmetric block matrix
- Can be generalized and implemented for $G=K_{n}$

Lorentzian characterizations for $G=K_{4}$

- Using subgraph counts instead of homomorphism densities

Theorem 7

Suppose P is the Markov random graph model on K_{4} and the 2 -star parameter $\beta_{2}=0$. Then, P is Lorentzian if and only if the 3 -star and triangle parameters β_{3}, β satisfy

$$
\begin{gathered}
T \ln \left(\frac{3-\sqrt{3}}{4}\right) \leq \beta_{3} \leq 0 \text { and } \\
-T \ln 2-\beta_{3} \leq \beta \leq 0
\end{gathered}
$$

Lorentzian characterizations for $G=K_{4}$

Theorem 8

Suppose P is the Markov random graph model on K_{4} and the 3 -star parameter $\beta_{3}=0$. Then, P is Lorentzian if and only if the 2 -star and triangle parameters β_{2}, β satisfy

$$
\begin{aligned}
-T \ln 2 \leq \beta_{2} & \leq 0 \text { and } \\
-T \ln 2-\beta_{2} \leq \beta & \leq-\beta_{2}
\end{aligned}
$$

Minors for $\beta_{3}=0$

$g_{4}\left(X_{2}, Y\right)=3 X_{2}^{2} Y^{2}+2 X_{2}^{2} Y+$
$3 X_{2}^{2}-6 X_{2} Y-6 X_{2}+3$

$g_{5}\left(X_{2}, Y\right)=3 X_{2}^{2} Y^{2}+2 X_{2}^{2} Y+$
$3 X_{2}^{2}-6 X_{2} Y-5 X_{2}+3$

Thank you!

References I

囯 N. Anari, S. O. Gharan, and C. Vinzant.
Log-concave polynomials i: Entropy and a deterministic approximation algorithm for counting bases of matroids.
Duke Mathematical Journal, October 2021.
目 N. Anari, K. Liu, S. O. Gharan, and C. Vinzant.
Log-concave polynomials ii: High-dimensional walks and an fpras for counting bases of a matroid.
STOC 20 I 9: Proceedings of the 5 Ist Annual ACM SIGACT
Symposium on Theory of Computing, June 2019.

References II

嗇 J．Borcea，P．Brändén，and T．M．Liggett．
Negative dependence and the geometry of polynomials．
Journal of the American Mathematical Society，22（2）：521－567，April
2009.

國 P．Brändén and J．Huh．
Lorentzian polynomials．
Annals of Mathematics，｜92（3）：82 I－89｜，November 2020.
國 P．Brändén．
Polynomials with the half－plane property and matroid theory．
Advances in Mathematics， 21 6：302－320，June 2007.

图 A. Kulesza and B. Taskar.
Determinantal point processes for machine learning.
Foundations and Trends in Machine Learning, 5(2-3): I 23-286,
December 2012.
圊 R. Pemantle.
Towards a theory of negative dependence. Journal of Mathematical Physics, 4 I (I37I), March 2000.

