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Chapter 5: Monads and their algebras

Section 5.1. Monads from adjunctions

Exercise 5.1.iii. The adjunction associated to a reflective subcategory C induces an idempotent monad on C. Prove
that the following three characterizations of an idempotent monad (7,7, u) are equivalent.

(i) The multiplication p : T? = T is a natural isomorphism.
(i) The natural transformations nT,Tn : T = T? are equal.

(iii) Each component of g : T? = T is a monomorphism.

o (i)=(iii):

Clearly if each component of p is an isomorphism, then each component is also a monomorphism.

o (iii)=-(ii):
Suppose each component of y : T2 = T is a monomorphism.
By the definition of a monad, the following commutes in C¢:

T 2 Ly
\ Hf‘/
17 17
T
That is,

poTn=1r
ponT =1r

As each component of i is a monomorphism, then Tn = nT.
o (ii)=(i):
Suppose nT = Tn.

Claim: For every T-algebra! A, the T-action a: TA — A is an isomorphism.
Proof of claim: By the definition of T-algebra, the following commutes in C (by 5.2.5):

AT TA
o
A
That is,
aona=1a
Thus, by applying the endofunctor T,
T(a)oT(na) = 1ra
Since nra = Tna, then

T(a)onra =1ra

Lthis is defined in 5.2.4.



Math 9511L

Since 7 is natural, then
naoa=1ry

Asaong =14 and g oa = 14, then a is an isomorphism. O

By this claim, since every T-action is an isomorphism, the components py : T?4A — TA are
isomorphisms as well (they are a type of T-action). In particular, every component of u is an
isomorphism so p is a natural isomorphism.

Section 5.2. Adjunctions from monads

Exercise 5.2.iii. Dualize Definition 5.2.4 and Lemma 5.2.8 to define the category of coalgebras for a comonad together
with its associated forgetful-cofree adjunction.

Let C be a category with a comonad (K, e€,) where K : C — C is an endofunctor, ¢ : K = l¢,
d: K = K?. The dual definition of the category of T-algebras is the category of K-coalgebras, CX,
given by the following:

- objects: pairs (A € C,a: A — KA) so that the diagrams

A—25 KA K2A "5 KA

PN

KA+—— A

commute in C, and

- morphisms: f: (A,a) — (B,b) is a morphism f: B — A € C so that the square

B—L 24

o| s
KB —— KA

commutes in C.

The dual to lemma 5.2.8 for comonads is given as follows:

For any comonad (K¢, d) acting on a category C, there exists an adjunction

UK
c 17 CK
FK
where UX : CK — C is the forgetful functor and FX : C — CX takes A € C to the free K-coalgebra
FEA:=(KAb4: KA — K%A)

and takes a morphism f : A — B to cofree k-coalgebra morphism

FKf = (KB753) - (KAa(;A)
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Exercise 5.2.iv. Verify that the Kleisli category is a category by checking that the composition operation of Definition
5.2.9 is associative.

Recall definition 5.2.9: Given a monad (T, 7, 1) on a category C. The Kleisli category Cr is a category
with objects the objects of C, that is: an object x € C is associated with itself, denoted xr € Crp.
A morphism f° : & ~» y in Cp is a morphism f : * — Ty € C. Composition in Cr, for f° : z — v,
¢* 1y — zis defined by ¢°o f* := (. 0Tgo f)’. This is associative because of the following commutative

diagram.
T ! Ty T9 2, _#= o,
fl lTh
Ty T?w
Tgl Juw
T2z p— T3w The T?w ™ Tw

This reduces to the following commutative diagram:

T2, 2= 5 T2

o |

T
T3w —22 T2
HTw

This is commutative by naturality of u at z N )
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Section 5.5. Recognizing categories of algebras

Exercise 5.5.iv. For any group G, the forgetful functor Set®¢ — Set admits a left adjoint that sends a set X to the
G-set G x X, with G acting on the left. Prove that this adjunction is monadic by appealing to the
monadicity theorem.

By Beck’s monadicity theorem, a functor U : D — C is monadic if and only if U has a left adjoint and
U creates coequalizers of U-split pairs. An equivalent statement is:

A functor U : D — C is monadic iff:

1. U has a left adjoint;

2. D has coequalizers of U-split pairs;
3.
4

. U reflects isomorphisms.

U preserves coequalizers of U-split pairs; and

To this end, the four conditions above must be shown for U : Set®E — Set.

1.

First, it is given that U has a left adjoint F : Set — Set®¢ given by X — G x X (G acts on the
left).

. Set®% has coequalizers of U-split pairs:

Actually, we claim that Set®Y has arbitrary coequalizers.

For any diagram D : J — Set®Y, colim,D is the set of G-orbits (Ex. 3.5.i). By Theorem 3.4.12,
the colimit of any small diagram D : J — SetBY can be expressed as a coequalizer of a pair of
maps between coproducts. i.e., the following: if f, g : A = B is a pair of G-maps, their coequalizer

is the canonical projection map
7m:B—» B/~

where ~ is the equivalence relation defining the G-orbits; x ~ y iff 39 € G such that g -z =y. 7
equalizes f and g and satisfies the universal property of coequalizers, i.e.,

f
A;T B ——» B/~
Wy R

C

As SetBY has arbitrary coequalizers, it has coequalizers of U-split pairs.

. U preserves coequalizers of U-split pairs:

Suppose f, g is a U-split pair. Their coequalizer in Set is the quotient UB/ ~' where ~' is th
equivalence relation by ~' by iff 3 a € A such that f(a) = by and g(a) = by. Denote this by p:

f
A— 2 B-—Lt% B/~
g

To show that U preserves coequalizers of U-split pairs, it remains to show that
B/ ~=U(B/ ~)

U reflects isomorphisms:

Suppose f : A — B is a morphism (G-map) in Set®“ such that U(f) is an isomorphism in Set.
This implies that f is a bijection of sets. As f is a G-map by assumption, and a bijective G-map
is an isomorphism in Set®“, then fe Set®Y is an isomorphism. Hence, U reflects isomorphisms.

By Beck’s monadicity theorem, then the adjunction is monadic.
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O

Exercise 5.5.v. Generalizing Exercise 5.5.iv, for any small category J and any cocomplete category C, the forgetful
functor C? — C°P admits a left adjoint Lan : C°® — C! that sends a functor F' € C°" to the functor

LanF € C’ defined by
LanF(j H H Fx
€ J(z,7)

(i) Define LanF on morphisms in J.

Suppose f : a — b is a morphism in J. Define LanF'(f) : LanF'(a) — LanF(b) by

LanF(f): [T [] F=— ]I ] Fv

€l J(z,a) yeJ J(y,b)

where Fx — Fy according to f by post-composition.

(ii) Define Lan on morphisms in C°J.
Suppose « : F' = G is a morphism in C°" where F,G : obJ — C and the components are given
by «; : F'(j) — G(j) for each j € obJ. Then, Lana = a* where
o :LanF = LanG
aj : LanF'(j) — LanG(j)

H H Fxb—>H H Gxoay

x€J J(x,5) zed J(z,

(iii) Use the Yoneda lemma to show that Lan is left adjoint to the forgetful (restriction) functor
CJ — Cobd,

(iv) Prove that this adjunction is monadic by appealing to the monadicity theorem.

Exercise 5.5.vii. Consider the Kleisli category Setr for a monad T acting on Set and choose a skeleton N = Fin < Set
for the full subcategory of finite sets. Let L be the opposite of the full subcategory of the Kleisli
category spanned by the objects 0,1,2,... in N, so that there is an identity-on-objects functor:

[ L — > L
Fin®P Setor T Sety?

(i) Show that the categories N°P and L have strictly associative finite products that are preserved by
the functor I : N°P — L.

—  Strictly associative?
When the monad T is finitary, the functor I : N°® — L defines its associated Lawvere theory.
Because the objects in the category L are all iterated finite products of the object 1, the essential
data in the Lawvere theory is the set L(n,1) of “n-ary operations.” It is possible to recover the
category of T-algebras, that is, the category of models for this algebraic theory, from this data. A
model of the Lawvere theory in Set is a finite product preserving functor L — Set. A morphism
between models is a natural transformation.
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(ii) Define a functor from the category of T-algebras to the category of models for the Lawvere theory
I:N°P — L.

To define a functor CT — mod, where mod, is the category of models for the Lawvere theory L,
using exercise 5.2.vii, define:

T-algebra — underlying set functor Ul|r : L — Set



