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Chapter 5: Monads and their algebras

Section 5.1. Monads from adjunctions

Exercise 5.1.iii. The adjunction associated to a reflective subcategory C induces an idempotent monad on C. Prove
that the following three characterizations of an idempotent monad (T, η, µ) are equivalent.

(i) The multiplication µ : T 2 ⇒ T is a natural isomorphism.

(ii) The natural transformations ηT, Tη : T ⇒ T 2 are equal.

(iii) Each component of µ : T 2 ⇒ T is a monomorphism.

• (i)⇒(iii):

Clearly if each component of µ is an isomorphism, then each component is also a monomorphism.

• (iii)⇒(ii):

Suppose each component of µ : T 2 ⇒ T is a monomorphism.

By the definition of a monad, the following commutes in CC:

T T 2 T

T
1T

ηT

µ

Tη

1T

That is,

µ ◦ Tη = 1T

µ ◦ ηT = 1T

As each component of µ is a monomorphism, then Tη = ηT .

• (ii)⇒(i):

Suppose ηT = Tη.

Claim: For every T -algebra1 A, the T -action a : TA→ A is an isomorphism.

Proof of claim: By the definition of T -algebra, the following commutes in C (by 5.2.5):

A TA

A
1A

ηA

a

That is,

a ◦ ηA = 1A

Thus, by applying the endofunctor T ,

T (a) ◦ T (ηA) = 1TA

Since ηTA = TηA, then

T (a) ◦ ηTA = 1TA

1this is defined in 5.2.4.
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Since η is natural, then

ηA ◦ a = 1TA

As a ◦ ηA = 1A and ηA ◦ a = 1TA, then a is an isomorphism. �

By this claim, since every T -action is an isomorphism, the components µA : T 2A → TA are
isomorphisms as well (they are a type of T -action). In particular, every component of µ is an
isomorphism so µ is a natural isomorphism.

Section 5.2. Adjunctions from monads

Exercise 5.2.iii. Dualize Definition 5.2.4 and Lemma 5.2.8 to define the category of coalgebras for a comonad together
with its associated forgetful–cofree adjunction.

Let C be a category with a comonad (K, ε, δ) where K : C → C is an endofunctor, ε : K ⇒ 1C,
δ : K ⇒ K2. The dual definition of the category of T -algebras is the category of K-coalgebras, CK ,
given by the following:

- objects: pairs (A ∈ C, a : A→ KA) so that the diagrams

A KA

A

a

1A
ηA

K2A KA

KA A

µA

Ka

a

a

commute in C, and

- morphisms: f : (A, a)→ (B, b) is a morphism f : B → A ∈ C so that the square

B A

KB KA

f

b a

Kf

commutes in C.

The dual to lemma 5.2.8 for comonads is given as follows:

For any comonad (K, ε, δ) acting on a category C, there exists an adjunction

C CK
UK

>
FK

where UK : CK → C is the forgetful functor and FK : C→ CK takes A ∈ C to the free K-coalgebra

FKA := (KA, δA : KA→ K2A)

and takes a morphism f : A→ B to cofree k-coalgebra morphism

FKf := (KB, δB)→ (KA, δA)
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Exercise 5.2.iv. Verify that the Kleisli category is a category by checking that the composition operation of Definition
5.2.9 is associative.

Recall definition 5.2.9: Given a monad (T, η, µ) on a category C. The Kleisli category CT is a category
with objects the objects of C, that is: an object x ∈ C is associated with itself, denoted xT ∈ CT .
A morphism f [ : x  y in CT is a morphism f : x → Ty ∈ C. Composition in CT , for f [ : x → y,
g[ : y → z is defined by g[◦f b := (µz◦Tg◦f)[. This is associative because of the following commutative
diagram.

x Ty T 2z Tz

Ty T 2w

T 2z T 3w T 2w Tw

f

f Tg µz

Th

Tg µw

T 2h Tµw
µw

This reduces to the following commutative diagram:

T 2z Tz

T 3w T 2w

T 2h

µz

Th

Tµw

µTw

This is commutative by naturality of µ at z
h−→ Tw.
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Section 5.5. Recognizing categories of algebras

Exercise 5.5.iv. For any group G, the forgetful functor SetBG → Set admits a left adjoint that sends a set X to the
G-set G × X, with G acting on the left. Prove that this adjunction is monadic by appealing to the
monadicity theorem.

By Beck’s monadicity theorem, a functor U : D→ C is monadic if and only if U has a left adjoint and
U creates coequalizers of U -split pairs. An equivalent statement is:

A functor U : D→ C is monadic iff:

1. U has a left adjoint;

2. D has coequalizers of U -split pairs;

3. U preserves coequalizers of U -split pairs; and

4. U reflects isomorphisms.

To this end, the four conditions above must be shown for U : SetBG → Set.

1. First, it is given that U has a left adjoint F : Set → SetBG given by X 7→ G×X (G acts on the
left).

2. SetBG has coequalizers of U -split pairs:

Actually, we claim that SetBG has arbitrary coequalizers.

For any diagram D : J → SetBG, colimJD is the set of G-orbits (Ex. 3.5.i). By Theorem 3.4.12,
the colimit of any small diagram D : J → SetBG can be expressed as a coequalizer of a pair of
maps between coproducts. i.e., the following: if f, g : A⇒ B is a pair of G-maps, their coequalizer
is the canonical projection map

π : B � B/ ∼

where ∼ is the equivalence relation defining the G-orbits; x ∼ y iff ∃g ∈ G such that g · x = y. π
equalizes f and g and satisfies the universal property of coequalizers, i.e.,

A B B/ ∼

C

g

f

∀γ
∃!

As SetBG has arbitrary coequalizers, it has coequalizers of U -split pairs.

3. U preserves coequalizers of U -split pairs:

Suppose f, g is a U -split pair. Their coequalizer in Set is the quotient UB/ ∼′ where ∼′ is th
equivalence relation b1 ∼′ b2 iff ∃ a ∈ A such that f(a) = b1 and g(a) = b2. Denote this by p:

A B B/ ∼′
g

f p

To show that U preserves coequalizers of U -split pairs, it remains to show that

B/ ∼′∼= U(B/ ∼)

4. U reflects isomorphisms:

Suppose f : A → B is a morphism (G-map) in SetBG such that U(f) is an isomorphism in Set.
This implies that f is a bijection of sets. As f is a G-map by assumption, and a bijective G-map
is an isomorphism in SetBG, then f ∈ SetBG is an isomorphism. Hence, U reflects isomorphisms.

By Beck’s monadicity theorem, then the adjunction is monadic.
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Exercise 5.5.v. Generalizing Exercise 5.5.iv, for any small category J and any cocomplete category C, the forgetful
functor CJ → CobJ admits a left adjoint Lan : CobJ → CJ that sends a functor F ∈ CobJ to the functor
LanF ∈ CJ defined by

LanF (j) =
∐
x∈J

∐
J(x,j)

Fx

(i) Define LanF on morphisms in J.

Suppose f : a→ b is a morphism in J. Define LanF (f) : LanF (a)→ LanF (b) by

LanF (f) :
∐
x∈J

∐
J(x,a)

Fx→
∐
y∈J

∐
J(y,b)

Fy

where Fx 7→ Fy according to f by post-composition.

(ii) Define Lan on morphisms in CobJ.

Suppose α : F ⇒ G is a morphism in CobJ where F,G : obJ → C and the components are given
by αj : F (j)→ G(j) for each j ∈ obJ. Then, Lanα = α∗ where

α∗ :LanF ⇒ LanG

α∗j : LanF (j)→ LanG(j)∐
x∈J

∐
J(x,j)

Fx 7→
∐
x∈J

∐
J(x,j)

Gx ◦ αx

(iii) Use the Yoneda lemma to show that Lan is left adjoint to the forgetful (restriction) functor
CJ → CobJ.

(iv) Prove that this adjunction is monadic by appealing to the monadicity theorem.

Exercise 5.5.vii. Consider the Kleisli category SetT for a monad T acting on Set and choose a skeleton N
∼=→ Fin ↪→ Set

for the full subcategory of finite sets. Let L be the opposite of the full subcategory of the Kleisli
category spanned by the objects 0, 1, 2, . . . in N, so that there is an identity-on-objects functor:

Nop L

Finop Setop SetopT

'

I

FT

(i) Show that the categories Nop and L have strictly associative finite products that are preserved by
the functor I : Nop → L.

– Strictly associative?

When the monad T is finitary, the functor I : Nop → L defines its associated Lawvere theory.
Because the objects in the category L are all iterated finite products of the object 1, the essential
data in the Lawvere theory is the set L(n, 1) of “n-ary operations.” It is possible to recover the
category of T -algebras, that is, the category of models for this algebraic theory, from this data. A
model of the Lawvere theory in Set is a finite product preserving functor L→ Set. A morphism
between models is a natural transformation.
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(ii) Define a functor from the category of T -algebras to the category of models for the Lawvere theory
I : Nop → L.

To define a functor CT → modL where modL is the category of models for the Lawvere theory L,
using exercise 5.2.vii, define:

T -algebra 7→ underlying set functor U |T : L→ Set
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