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Chapter 4: Adjunctions

Section 4.1. Adjoint functors

Exercise 4.1.i. Show that functors F : C → D and G : D → C and bijections D(Fc, d) ∼= C(c,Gd) for each c ∈ C
and d ∈ D define an adjunction if and only if these bijections induce a bijection between commutative
squares:

Fc d

Fc′ d′

f]

Fh k

g]

!
c Gd

c′ Gd′

f[

h Gk

g[

(i.e., prove Lemma 4.1.3.)

⇒: Suppose D(Fc, d) ∼= C(c,Gd) is natural in both variables for all c ∈ C, d ∈ D.

 : Suppose

Fc d

Fc′ d′

f]

Fh k

g]

commutes in D. By naturality in D,

(kf ])[ = Gkf [

Also, by naturality in C,

(g]Fh)[ = g[h

So we have that commutes in C:

c Gd

c′ Gd′

f[

h Gk

g[

 : If the left-hand square commutes, going backwards in the above proof yields that the right-hand
square commutes.

⇐: On the other hand, suppose that

Fc d

Fc′ d′

f]

Fh k

g]

commutes in D if and only if

c Gd

c′ Gd′

f[

h Gk

g[

commutes in C.

To show that D(Fc, d) ∼= C(c,Gd) is natural in both variables, it suffices to show that

Gkf [ = (kf ])[ in C

f [h = (f ]Fh)[ in C

But this is the statement of the commutative squares (just applying [ and ] and moving back and
forth).
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Exercise 4.1.ii. Define left and right adjoints to

(i) ob : Cat→ Set,

ob : Cat→ Set is defined by sending a category C to its set of objects and a functor F : C→ D to
its underlying set map obC→ obD.

Left adjoint to ob: The functor Di : Set→ Cat where:

Di : X 7→ discrete category on X

i.e., the category where objects are elements of X and morphisms are only identity morphisms.

Right adjoint to ob: The functor G : Set→ Cat where:

G : X 7→ category CX with obCX = X

and CX has exactly one arrow in each hom-set.

(ii) Vert : Graph→ Set, and

Vert : Graph → Set is defined by sending a graph Γ to its set of vertices and a graph morphism
ϕ : Γ→ Ψ to its underlying set map of vertices, VΓ → VΨ.

Left adjoint to Vert: The functor F : Set→ Graph where:

F : X 7→ ΓX

where ΓX is the graph with vertices elements of X and set maps are sent to the graph morphism
defined on the vertices of each graph.

Right adjoint to Vert: The functor G : Set→ Graph where:

G : X 7→ Γ′X

where Γ′X is the graph with vertices X and one edge between every pair of vertices (the complete
graph on |X| vertices).

(iii) Vert : DirGraph → Set. Vert : DirGraph → Set is defined by sending a directed graph Γ to its
set of vertices and a directed graph morphism ϕ : Γ → Ψ to its underlying set map of vertices,
VΓ → VΨ.

Left adjoint to Vert: The functor F : Set→ DirGraph where:

F : X 7→ ΓX

where ΓX is the graph with vertices elements of X and set maps are sent to the graph morphism
defined on the vertices of each graph.

Right adjoint to Vert: The functor G : Set→ DirGraph where:

G : X 7→ Γ′X

where Γ′X is the graph with vertices X and two edges between every pair of vertices (each Hom
set has exactly 1 element, and morphisms are directed graph morphisms).
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Exercise 4.1.iii. Show that any triple of adjoint functorsrt

C D
⊥

U

R

L

⊥

gives rise to a canonical adjunction LU a RU between the induced endofunctors of C.

Since L a U , and U a R, then for each c ∈ C, d ∈ D,

C(Ld, c) ∼= D(d, Uc)

D(Uc, d) ∼= C(c,Rd)

and both isomorphisms are natural in both variables.

Want: natural isomorphism C(LUc′, c) ∼= C(c′, RUc) for each c, c′ ∈ C. We have that C D CU

R

L

U

Denote the adjunctions L a U and U a R as follows.

LUc′ → c

Uc′ → Uc

c′ → RUc

Thus, by the first and last lines of the above visual, LU ` RU .

Section 4.2. The unit and counit as universal arrows

Exercise 4.2.i. Prove that any pair of adjoint functors F : C→ D, G : D→ C restrict to define an equivalence between
the full subcategories spanned by those objects c ∈ C and d ∈ D for which the components of the unit
ηc and of the counit εc, respectively, are isomorphisms.

Restrict F and G to the full subcategories of C and D respectively spanned by those c ∈ C, d ∈ D such
that ηc and εd are isomorphisms. For ease of notation, denote these as F and G. Then, F is fully
faithful if and only if

C(x, y)→ D(Fx, Fy)

is an isomorphism in Set. Observe that

C(x, y) D(Fx, Fy) C(x,GFy)

is naturalin x. By adjunction (and the Yoneda lemma), we know that

D(Fx, Fy) C(x,GFy)

is an isomorphism.

Now, C(x, y)→ C(x,GFy) is also an isomorphism:

(f : x 7→ y) 7−→ ηy ◦ f ∈ C(x,GFy)
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As ηy is an isomorphism, then this map is injective and surjective. Hence,this is an isomorphism, which
yields that C(x, y)→ D(Fx, Fy) is an isomorphism. So F is fully faithful.

Similarly, G is fully faithful iff

D(x′, y′)→ C(Gx′, Gy′)

is an isomorphism in Set. Observe that

D(x′, y′) C(Gx′, Gy′) D(FGx′, y′)

is determined by εx′ so that D(x′, y′)→ D(FGx′, y′) is given by g 7→ g ◦ εx′ .

F is essentially surjective: Let d ∈ D. Take c := Gd ∈ C. Since εd : FGd→ d is an isomorphism, then
Fc ∼= d and hence F is essentially surjective.

That is, F and G are fully faithful and essentially surjective, and hence these restrictions define an
equivalence.

Exercise 4.2.iii. Pick your favourite forgetful functor from Example 4.1.10 and prove that it is a right adjoint by defining
its left adjoint, the unit, and the counit, and demonstrating that the triangle identities hold.

From example 4.1.10(iv): consider the forgetful functor U : Ab → Set. The “free” construction
F : Set→ Ab where X 7→ Z[X] := ⊕XZ is left adjoint to U .

Unit: The unit is given by η : 1Set ⇒ UF , where

ηA : A→ UFA

UFA is the underlying set of the abelian group on A, so this is the inclusion of generators.

Counit: The counit is given by ε : FU ⇒ 1Ab, where

εG : FUG→ G

Since FX = {
∑
g∈G cg · g | cg ∈ Z}, then

∑
g∈G cg · g is the evaluation of the sum. This is what εG

corresponds to.

Triangle identities: It is clear that FηA : FA → FUFA has left inverse εFA : FUFA → FA and
UεG : UFUG→ UG has right inverse ηUG : UG→ UFUG.

Exercise 4.2.iv. Each component of the counit of an adjunction is a terminal object in some category. What category?

Suppose F a G, F : C� D : G, is an adjunction. Let ε : FG⇒ 1D, εd : FGd→ d be the counit. Let
1d : 1→ D denote the constant functor at d ∈ D.

Claim: εd is a terminal object of the comma category F ↓ 1d (defined in Exercise 1.3.vi).

Let (c ∈ C, x ∈ 1, f : Fc→ 1dx) be an arbitrary element of F ↓ 1d. Then, there exist unique f̄ : c→ Ud
such that this commutes:

FUd d

Fc

εd

F (f̄)
f

i.e., there exists a unqiue morphism (c ∈ C, x ∈ 1, f : Fc→ 1dx)→ (Gd ∈ C, x ∈ 1, εd : FGd→ 1dx),
so εd is the terminal object of this comma category.
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Section 4.3. Contravariant and multivariable adjoint functors

Exercise 4.3.iii. Show that the contravariant power set functor P : Setop → Set is mutually right adjoint to itself.

By definition, P : Setop → Set is mutually right adjoint to itself if and only if there exists a natural
isomorphism (for all A ∈ Setop, B ∈ Set).

Set(B,PA) ∼= Set(A,PB)

Note the following adjunction for sets X,Y, Z:

X
f−→ ZY

X × Y −→
g
Z

This is given by () from top to bottom as:

f̄(x, y) = f(x)(y)

and
∗
() from bottom to top is given by:

g∗(x)(y) = g(x, y)

Then, clearly −× Y a (−)Y .

Using this, we have the following sequence of adjunctions (notation as in Exercise 4.1.iii.).

A→ P (B)

A→ ΩB

A×B → Ω

B ×A→ Ω

B → ΩA

B → P (A)

Hence, P is mutually right adjoint to itself.

Section 4.5. Adjunctions, limits, and colimits

Exercise 4.5.i. When does the unique functor ! : C→ 1 have a left adoint? When does it have a right adjoint?

The functor ! : C→ 1 has a left adjoint when C has an initial object. Denoting the initial object as s,
the counit of the adjunction is ε : s→ c.

Similarly, functor ! : C → 1 has a right adjoint when C has a terminal object t. The unit of the
adjunction is then η : c→ t.

Exercise 4.5.ii. Suppose the diagonal functor ∆ : C→ CJ admits both left and right adjoints. Describe the units and
counits of these adjunctions.

The left adjoint to ∆ : C→ CJ is the colimit object and the unit is the universal cone (in definition of
colimit); and similarly the right adjoint to ∆ is the limit object with counit the universal cone.
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Section 4.6. Existence of adjoint functors

Exercise 4.6.ii. Use Theorem 4.6.3 to prove that the inclusion Haus ↪→ Top of the full subcategory of Hausdorff spaces
into the category of all spaces has a left adjoint. The left adjoint carries a space to its “largest
Hausdorff quotient.” Conclude, by applying Proposition 4.5.15, that the category of Hausdorff spaces,
as a reflective subcategory of a complete and cocomplete category, is cocomplete as well as complete.

First, it is clear that any product of Hausdorff spaces is Hausdorff and a subspace of a Hausdorff space
is also Hausdorff. Thus, Haus is complete and U : Haus ↪→ Top is a continuous functor.

To show that U has a left adjoint, it remains to show that the solution set condition holds (by the
Adjoint Functor Theorem 4.6.3). To this end, let X ∈ Top be an arbitrary topological space. Let
f : X → Y be a continuous map where Y ∈ Haus. Then, clearly the following diagram commutes.

X Y

f(X)

f

f

ι

As f(X) ⊂ Y is a subspace, then it is also Hausdorff, so f(X) ∈ Haus. Also, f factors through f along
the inclusion morphism ι : f(X) ↪→ Y . That is, the solution set condition holds and thus U has a left
adjoint.

By Proposition 4.5.15, as Haus is a reflective subcategory (U admits a left adjoint), then Haus admits
all small colimits, so it is cocomplete.
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