Chapter 3: Limits and Colimits

Section 3.1. Limits and colimits as universal cones

Exercise 3.1.v. Consider a diagram $F : J \to P$ valued in a poset (P, \leq) . Use order-theoretic language to characterize the limit and the colimit.

By definition 3.1.6, for a diagram $F : J \to P$, a limit is a terminal object in the category of cones over F, i.e., in $\int \operatorname{Cone}(-, F)$. An object of $\int \operatorname{Cone}(-, F)$ is a cone over F with any summit. A cone over $F : J \to P$ with summit $c \in P$ is a natural transformation $\lambda : c \Rightarrow F$. The components $(\lambda_j : c \to F_j)_{j \in J}$ are called the legs. i.e., it is the collection of morphisms $\lambda_j : c \to F_j$ such that for all morphisms $f : j \to k \in J$, this commutes in P:

Claim: $\lim F = \inf\{Fj \mid j \in \mathsf{J}\}.$

As $\inf\{Fj \mid Fj \in J\} \leq F_j$ for all j, then this is a cone. Also, if $p \leq Fj$ for all j, then $p \leq \lim F$ by definition of infimum. That is, there exists a unique morphism $f: p \to \lim F$. So $\lim F$ is the terminal object of $\int \operatorname{Cone}(-, F)$ as required.

Claim: $\operatorname{colim} F = \sup\{Fj \mid j \in \mathsf{J}\}.$

Since $\sup\{Fj \mid j \in J\} \ge Fj$ for all $j \in J$, then this is a cone under F by definition. Also, if $q \ge F_j$ for all j then $q \ge \operatorname{colim} F$ by definition of supremum, so there exists a unique morphism $g: \operatorname{colim} F \to q$. That is, this is the initial object of $\int \operatorname{Cone}(F, -)$, as required.

Exercise 3.1.vi. Prove that if

$$E \xrightarrow{h} A \xrightarrow{f} B$$

is an equalizer diagram, then h is a monomorphism.

Let $j, \ell: C \to E$ be morphisms such that

$$hj = h\ell$$

Let $a = hj = h\ell$. Then, the following commutes.

$$C$$

$$\ell \downarrow \downarrow j \qquad a=hj=h\ell$$

$$E \xrightarrow{h} A \xrightarrow{f} B$$

Since $E \xrightarrow{h} A \xrightarrow{f} B$ is an equalizer diagram, by the universal property, $\exists ! k : C \to E$ such that a = hk. By uniqueness and the above diagram, then $k = j = \ell$, so h is a monomorphism.

Exercise 3.1.vii. Prove that if

$$\begin{array}{c} P \xrightarrow{k} C \\ h \downarrow & \downarrow g \\ B \xrightarrow{f} A \end{array}$$

is a pullback square and f is a monomorphism, then k is a monomorphism.

Suppose f is a monomorphism. Let $j,\ell:D\to P$ be such that

 $kj = k\ell$

By hypothesis, this commutes.

Then, $gkj = gk\ell$. Since the diagram commutes, then

$$fhj=fh\ell$$

Since f is a monomorphism, then

$$hj = h\ell$$

That is, $kj = k\ell$ and $hj = h\ell$. By the universal property of the pullback P, then

 $j = \ell$ $\Rightarrow k$ is a monomorphism.

Exercise 3.1.viii. Consider a commutative rectangle

whose right-hand square is a pullback. Show that the left-hand square is a pullback if and only if the composite rectangle is a pullback.

Label the diagram as follows.

 \Rightarrow : Suppose the left-hand square is a pullback. To show that the composite rectangle is a pullback, suppose the following diagram commutes:

Since the right-hand square is a pullback, there exists a unique map $k_1 : P \to B$ such that this commutes:

Since the left-hand square is a pullback, then there exists a unique $k_2 : P \to A$ such that the following commutes.

Therefore, the composite rectangle is a pullback.

 \Leftarrow : On the other hand, suppose the composite rectangle is a pullback.

To show that the left-hand square is a pullback, suppose the following diagram commutes.

Then, this also commutes

Since the composite rectangle is a pullback, $\exists ! k_1 : P \to A$ such that

Hence, if $g \circ k_1 = b$, then it follows that the left-hand square is also a pullback. To this end, note that they both "fit" into the commutative diagram given by:

Since the right-hand square is a pullback, there exists exactly one such morphism (by uniqueness) and hence

$$g \circ k_1 = b$$

Thus, the left-hand square is a pullback.

Exercise 3.1.xiii. What is the coproduct in the category of commutative rings?

A coproduct $\coprod_{j\in J} A_j$ is the colimit of a diagram $(A_j)_{j\in J}$ indexed by a discrete category J. A cone under such a diagram is a J-indexed family of ring homomorphisms $(\lambda_j : Fj \to c)_{j\in J}$ with no further constraints. Suppose $R, S \in \mathsf{CRing}$ are rings with nadir a ring $Y \in \mathsf{CRing}$. That is, there are ring homomorphisms $f : R \to Y$ and $g : S \to Y$.

The legs of this cone are (inclusion) ring homomorphisms i, j such that $i : R \to R \coprod S, j : S \to R \coprod S$ so that this commutes:

By the coproduct being being the initial object, there exists a unique ring homomorphism $k:R\coprod S\to Y$ such that

This is exactly the universal property of $R \otimes_{\mathbb{Z}} S$, so $R \coprod S = R \otimes_{\mathbb{Z}} S$ (tensor product of the underlying abelian groups of R and S).

Section 3.2. Limits in the category of sets

Exercise 3.2.v. Show that for any small category J, any locally small category C, and any pair of parallel functors $F, G : J \Rightarrow C$, there is an equalizer diagram

$$C(Fj',Gj') \xrightarrow{Ff^*} C(Fj,Gj')$$

$$\xrightarrow{\pi_{j'}} \qquad \qquad \uparrow \\ \operatorname{Hom}(F,G) \longrightarrow \prod_{j \in \operatorname{obJ}} C(Fj,Gj) \xrightarrow{\pi_j} \prod_{f:j \to j' \in \operatorname{morJ}} C(Fj,Gj')$$

$$\xrightarrow{\pi_j} \qquad \qquad \downarrow \\ C(Fj,Gj) \xrightarrow{Gf_*} C(Fj,Gj')$$

Note: this construction gives a second formula for Hom(F, G) as a limit in Set.

First note that by definition, $Ff^* = -Ff$ and $Gf_* = Gf - .$ Now, let $h : \operatorname{Hom}(F, G) \to \prod_{j \in \operatorname{obJ}} \mathsf{C}(Fj, Gj)$ denote the monomorphism such that $(\alpha : F \Rightarrow G) \xrightarrow{h} \prod_{j \in J} \alpha_j$ where $(\alpha_j : F_j \to G_j)_j$ are the components of α . Applying $\pi_{j'}$ followed by Ff^* yields $\alpha_{j'} \circ Ff$ for each component $\alpha_{j'}$. Hence, the top arrow in the double arrows is F^* (pre-composition by F) and analogously the bottom arrow is G_* . i.e., we have

That is, we have the following for $\alpha \in \text{Hom}(F, G)$:

$$\alpha \xrightarrow{h} (\alpha_j)_{j \in \mathsf{J}} \xrightarrow{F^*} (\alpha_j \circ Ff)_{f \in \mathrm{morJ}}$$
$$\alpha \xrightarrow{h} (\alpha_j)_{j \in \mathsf{J}} \xrightarrow{G_*} (Gf \circ \alpha_j)_{f \in \mathrm{morJ}}$$

To show that $\operatorname{Hom}(F,G)$ is an equalizer, let $a: D \to \prod_{j \in \operatorname{obJ}} \mathsf{C}(Fj,Gj) \in \mathsf{Set}$ be arbitrary. i.e.,

$$D \xrightarrow{a} Hom(F,G) \xrightarrow{h} \prod_{j \in obJ} C(Fj,Gj) \xrightarrow{F^*} \prod_{f:j \to j' \in morJ} C(Fj,Gj')$$

That is, for each $d \in D$,

$$a(d) = (g_j^d)_{j \in \text{obJ}}$$

where $g_j^d: F_j \to G_j \in \mathsf{C}$ for each j is completely characterized by a.

Now, define $m: D \to \operatorname{Hom}(F, G)$ by

$$m: d \mapsto \alpha^{d}: F \Rightarrow G$$
where $g_{j}^{d} = \alpha_{j}^{d}: F_{j} \to G_{j}$ is the j^{th} summand of $a(d)$

$$D$$

$$m_{j}$$
Hom $(F, G) \xrightarrow{h} \prod_{j \in obJ} C(Fj, Gj) \xrightarrow{F^{*}}_{G_{*}} \prod_{f: j \to j' \in morJ} C(Fj, Gj')$

This defines a natural transformation since by the commutativity of the diagram,

 $Ff^*\pi_{j'}a = Gf_*\pi_j a$

and by construction this means that hm = a. This is also unique since it is completely characterized by a. As the universal property of the equalizer holds, then Hom(F, G) is an equalizer in the diagram.

Section 3.3. Preservation, reflection, and creation of limits and colimits

Exercise 3.3.ii. Prove Lemma 3.3.5, that a full and faithful functor reflects both limits and colimits.

Suppose $F : \mathsf{C} \to \mathsf{D}$ is a fully faithful functor. Given a diagram $D : \mathsf{J} \to \mathsf{C}$, then we have the composite $\mathsf{J} \xrightarrow{D} \mathsf{C} \xrightarrow{F} \mathsf{D}$. Suppose $(FL, F\lambda)$ is the limit in D of FD. Our candidate limit in C is (L, λ) . It must be shown that this is indeed a limit in C .

To this end, let (X, α) be a cone over D. Then, $(FX, F\alpha)$ is a cone over FD. Then, there exists a unique map of cones $f : FX \to FL$ from $(FX, F\alpha)$ to $(FL, F\lambda)$. As F is fully failtful, then there exists a unique map of cones $\overline{f} : X \to L$ such that $F\overline{f} = f$. This map \overline{f} is the unique map of cones, showing that (L, λ) is indeed a limit in C . Thus, a full and faithful functor reflects limits (and colimits).

Exercise 3.3.v. Show that the forgetful functors $U : Set_* \to Set$ and $U : Top_* \to Top$ fail to preserve coproducts and explain why this result demonstrates that the connectedness hypothesis in Proposition 3.3.8(ii) is necessary.

 $U : \mathsf{Set}_* \to \mathsf{Set}$ does not preserve coproducts: in Set_* , a coproduct of A and B is $(A \coprod b, c)$. The basepoint c is given by identifying the basepoint $a \in A$ with the basepoint $b \in B$. On the other hand, in Set , the coproduct is $A \coprod B$, but

$$(A\coprod B,c)\not\cong A\coprod B$$

in general.

Also, $U: \mathsf{Top}_* \to \mathsf{Top}$ fails to preserve coproducts: a coproduct in Top_* is the wedge sum, i.e.,

$$X \lor Y = X \coprod Y / \sim \quad \text{where } x_0 \sim y_0$$

where $x_0 \in X$, $y_0 \in Y$ are the respective basepoints. On the other hand, in Top, the coproduct of X and Y is $X \coprod Y$ (disjoint union). But, clearly

$$X \lor Y \not\cong X \coprod Y$$

The connectedness hypothesis in Proposition 3.3.8(ii) is necessary:

A coproduct $\coprod_{j\in J} A_j$ is the colimit of a diagram indexed by a *discrete* category J. But a discrete category is <u>not connected</u> (it only has identity morphisms). Thus, the coproduct is not a connected colimit, and so this hypothesis is needed for 3.3.8(ii) to hold.

Section 3.4. The representable nature of limits and colimits

Exercise 3.4.ii. Explain in your own words why the Yoneda embedding $C \hookrightarrow \mathsf{Set}^{C^{\mathrm{op}}}$ preserves and reflects but does not create limits.

By the Yoneda Lemma, the Yoneda embedding $y: \mathsf{C} \hookrightarrow \mathsf{Set}^{\mathsf{C}^{\mathrm{op}}}$ is full and faitfhful:

y is fully faithful so it reflects limits by Lemma 3.3.5. y preserves limits since by Theorem 3.4.2, for any $F : J \to C$ whose limit exists: $C(X, \lim_J F) \cong \lim_J C(X, F-)$. And $C(-, \lim F)$ is the limit of the composite diagram $J \xrightarrow{F} C \xrightarrow{y} \operatorname{Set}^{C^{\operatorname{op}}}$, so y preserves all limits that exist in C; but clearly y is not an equivalence in general and hence cannot create all limits.

Section 3.5. Complete and cocomplete categories

Exercise 3.5.i. Let G be a group regarded as 1-object category BG. Describe the colimit of a diagram $BG \rightarrow Set$ in group-theoretic terms, as was done for the limit in Example 3.2.12.

To determine the colimit of a left G-set $X : BG \to Set$, define \sim by $x \sim y$ iff there exists $g \in G$ such that gx = y. This is an equivalence relation since ex = x (reflexive); if gx = y then $g^{-1}y = x$ (symmetric); and if gx = y, hy = z, then hgx = z (transitive). The colimit of X is then the quotient $X/\sim =$ set of G-orbits.

Exercise 3.5.v. Describe the limits and colimits in the poset of natural numbers with the order relation $k \leq n$ if and only if k divides n.

All diagrams in a poset commute, so whether or not there are any morphisms in a diagram is not relevant.

Let $F: \mathsf{J} \to \mathbb{N}$ be a diagram.

Claim: $\lim F = \gcd\{Fj \mid j \in \mathsf{J}\}$

First, $\lim F \leq Fj$ for all j, hence this is a cone. Also, if $p \leq Fj$ for all j, so that $p \mid Fj$ for all j, then $p \mid \gcd\{Fj \mid j \in \mathsf{J}\}\$ by the greatest common divisor, so $p \leq \lim F$. Hence, this claim holds.

Claim: $\operatorname{colim} F = \operatorname{lcm} \{ Fj \mid j \in \mathsf{J} \}.$

Similarly, $Fj \leq \operatorname{colim} F$ for all j, hence this is a cone. Also, if $Fj \leq p$ for all j, so that $Fj \mid p$ for all j, then $\operatorname{lcm}\{Fj \mid j \in \mathsf{J}\} \mid p$ by the least common multiple, so $\operatorname{colim} F \leq p$. Hence, this claim holds.

Exercise 3.5.vii. Following [**Gro58**], define a **fiber space** $p: E \to B$ to be a morphism in **Top**. A map of fiber spaces is a commutative square. Thus, the category of fiber spaces is isomorphic to the diagram category Top^2 . We are also interested in the non-full subcategory $\mathsf{Top}/B \subset \mathsf{Top}^2$ of fiber spaces over B and maps whose codomain component is the identity. Prove the following:

(i) A map

of fiber spaces induces a canonical map from the fiber over a point $b \in B'$ to the fiber over its image $f(b) \in B$.

The canonical map from the fiber over a point $b \in B'$ to the fiber over its image $f(b) \in B$ is given by the unique map determined by the following commutative diagram (pullback squares in red and blue):

(ii) The fiber of a product of fiber spaces is the product of the fibers.

It must be shown that the following holds:

$$\begin{array}{cccc} E \times E & E & E' \\ \downarrow_{p \times p'} & = & \downarrow_{p} & \times & \downarrow_{p'} \\ B \times B' & B & B' \end{array}$$

The fiber yields the following pullback:

$$\begin{array}{ccc} (p \times p')^{-1}(b,b') & \longrightarrow E \times E' \\ & & \downarrow & & \downarrow^{p \times p'} \\ 1 & \xrightarrow{(b,b')} & B \times B' \end{array}$$

Since products commute with pullbacks, then

$$(p \times p')^{-1}(b, b') \cong p^{-1}(b) \times p'^{-1}(b')$$

Thus, the fiber of a product of fiber spaces is the product of the fibers.

A projection $B \times F \to B$ defines a **trivial fiber space** over B, a definition that makes sense for any space F.

(iii) Show that the fiber of a trivial fiber space $B \times F \to B$ is isomorphic to F.

To show that the fiber of $B \times F \to B$ is isomorphic to F, it is equivalent to this being a pullback:

The following holds for $X \in \mathsf{Top}$:

where $h(x) := \pi_2 \circ f(x)$. This commutes since $\iota h(x) = f(x)$ and $\pi_1 f(x) = b$ by commutativity of $X \longrightarrow B \times F$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$. Hence, the aforementioned square is indeed a pullback square. $1 \longrightarrow B$

(iv) Characterize the isomorphisms in Top/B between two trivial fiber spaces (with a priori distinct fibers) over B.

Suppose we have two trivial fiber spaces over B as follows.

 $\underline{\text{Claim}}: \ f = \text{id}_B \times f' \text{ where } f': F \to G. \\ \text{Let } (x,y) \in B \times F. \text{ Then}, \\ \end{array}$

$$\pi_1(x, y) = x$$

$$\pi'_1(x, y) = \pi'_1(f_1(x), f_2(x)) = f_1(x)$$

$$\Rightarrow \quad f_1 = \mathrm{id}$$

Hence, $f': F \to G$ is an isomorphism if there exists an isomorphism $f'': G \to F$.

(v) Prove that the assignment of the set of continuous sections of a fiber space over B defines a functor Sect : $\mathsf{Top}/B \to \mathsf{Set}$.

The functor Sect is representable:

$$\operatorname{Top} / B \left(\begin{array}{c} B \\ \bigcup_{\operatorname{id}_B}, - \\ B \end{array} \right) : \operatorname{Top} / B \to \operatorname{Set}$$

That is, we have:

$$B \xrightarrow{s} E \xrightarrow{f} E'$$

$$id_B \xrightarrow{g} B$$

so that

$$\operatorname{Top}/B(\operatorname{id}_B, p) \to \operatorname{Top}/B(\operatorname{id}_B, p')$$

is given by

$$s \longmapsto f \circ s$$

Hence, we have the following pullback square:

$$\begin{array}{cccc}
E' & \xrightarrow{g} & E \\
\downarrow^{p'} & \downarrow^{p'} & & \downarrow^{p} \\
B' & \xrightarrow{f} & B
\end{array}$$

Given p, define $Sect(p) := \{s : B \to E \mid ps = id\}$. That is,

$$\operatorname{Sect}:(\operatorname{\mathsf{Top}}^2_{\operatorname{pb}})^{\operatorname{op}}\longrightarrow\operatorname{\mathsf{Set}}$$

and given $s \in \text{Sect}(p)$, $s' \in \text{Sect}(p')$ must be defined by the following diagram (of pullback squares).

(vi) Consider the non-full subcategory Top_{pb}^2 of fiber spaces in which the morphisms are the pullback squares. Prove that the assignment of the set of continuous sections to a fiber space defines a functor Sect : $(\mathsf{Top}_{pb}^2)^{\mathrm{op}} \to \mathsf{Set}$.

We have the following diagram with the horizontal direction being in Top_{pb}^2 and the vertical direction in Top/B :

This gives us that $(g \circ s)' = g' \circ s'$ thus Sect defines a functor $(\mathsf{Top}_{pb}^2)^{\mathrm{op}} \to \mathsf{Set}$.