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Chapter 2: Universal Properties, Representability, and the Yoneda
Lemma

Section 2.1. Representable Functors
Exercise 2.1.i. For each of the three functors
1-52
152
1+ 2

between the categories 1 and 2, describe the corresponding natural transformations between the co-
variant functors Cat = Set represented by the categories 1 and 2.

1 is the category with one object (label it x) and its identity morphism. 2 is the category with two
objects (label them 0 and 1), their identity morphisms, and one non-identity morphism usually labelled
0—1.

The covariant functor represented by 1 is Hom(1,—) : Cat — Set, C — Hom(1,C). This covariant
functor is naturally isomorphic to the objects of C, and the covariant functor represented by 2 is
naturally isomorphic to the morphisms of a category C. i.e.,

Hom(1, C) = ObC
Hom(2, C) = MorC
This second isomorphism associates the morphisms in C with where the two objects of 2 are sent in C

(the endpoints of the arrow).

Now, consider the functor 1 % 2 that sends the object * € 1 to 0 € 2. This induces the natural
transformation Hom(2, C) — Hom(1, C) denoted by 0* and defined by the following.

MorC = Hom(2, C) N Hom(1,C) = ObC
(F:2-5C)r—0"F=Fo0

Similarly, consider the functor 1 L 2 that sends the object * € 1 to 1 € 2. This induces the natural
transformation Hom(2, C) — Hom(1, C) denoted by 1* and defined by the following.

MorC = Hom(2, C) A Hom(1,C) =2 ObC
(F:25C) s 1"F=Fol

Lastly, consider the functor 2 Y 1 that sends the objects in 2 to the single object x € 1 and all
morphisms to the identity of *. This induces the natural transformation Hom(1,C) — Hom(2,C)
denoted by !" and defined by the following.

ObC = Hom(1, C) —— Hom(2, C) 2 MorC
x— 1,

where € C is an object and 1, is its identity morphism.
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Exercise 2.1.ii.

Exercise 2.1.v.

Prove that if F' : C — Set is representable, then F preserves monomorphisms, i.e., sends every
monomorphism in C to an injective function. Use the contrapositive to find a covariant set-valued
functor defined on your favourite concrete category that is not representable.

Suppose F': C — Set is representable. Then, there exists some ¢ € C such that
F= C(Cv _)

That is, there exists a natural transformation « : C = Set such that for all z € C, o : Fz — C(c, x)
is an isomorphism and this commutes for all f: 2 — y € C.

Fr % C(c, )

Ffl oyt lf*

N
Fy —— Cle,y)

Now, let f : © — y € C be a monomorphism. Consider Ff : Fx — Fy € Set. To show that F'f is
injective, suppose that for some z1, 29 € Fz,

Ff(x1) = Ff(x2)

By the above commutative diagram, then the following holds («,, is an isomorphism),
Ff=o,"0f.oa,

Hence, the following holds.

Ff(z1) = Ff(z2)
a, o fioag(z1) =a,' o f.oam(xs)

froaz(z1) = fuoaz(x)

Since f, is post-composition by f, then it follows that
foaz(z1) = foaz(r2)
Now, f is a monomorphism, and hence

(1) = ag(x2)

As «, is an isomorphism, then x; = x5. Thus, F'f is injective so representable functors preserve
monomorphisms.

An example of a non-representable functor is given by an extension of exercise 1.6.iv. Recall the
functor F°P : Haus < Top does not preserve monomorphisms. Hence, U o F°P : Haus — Set (where
U : Top — Set is the forgetful functor) does not preserve monomorphisms. Hence, G = U o F°P is not
representable.

O

The functor of Example 2.1.5(xi) that sends a category to its collection of isomorphisms is a subfunctor
of the functor of Example 2.1.5(x) that sends a category to its collection of morphisms. Define a
functor between the representing categories I and 2 that induces the corresponding monic natural
transformations between these representable functors.

Example 2.1.5(xi) defined iso : Cat — Set as the functor that sends a small category to its set of
isomorphisms, and Example 2.1.5(x) defined mor : Cat — Set as sending a small category to its set of
morphisms.
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We have that isoC = Hom(I, C) and MorC = Hom(2,C) (as before). Hence, isoC — MorC, i.e.,
Hom(T, C) — Hom(2, C) is induced by the functor F' : 2 — T given by mapping 0 — 0,1 — 1, and the
morphism ! : 0 — 1 is mapped to the same morphism 0 — 1 € I:

Section 2.2. The Yoneda Lemma

Exercise 2.2.ii.

Exercise 2.2.iv.

Explain why the Yoneda lemma does not dualize to classify natural transformations from an arbitrary
set-valued functor to a represented functor.

Hom(F, Hom(c, —)) = F¢ does not hold in general.

Consider C = 1 = {x,* — x} and let ¢ € C be the single object. Suppose Fc¢ = & for some set-valued
functor F': C — Set. Then,

Hom(@, {x}) = {x} ¥ @

Hence, the Yoneda lemma does not classify natural transformations from an arbitrary set-valued functor
to a represented functor.

O

Prove the following strengthening of Lemma 1.2.3, demonstrating the equivalence between an isomor-
phism in a category and a representable isomorphism between the corresponding co- or contravari-
ant represented functors: the following are equivalent:

(i) f:a — y is an isomorphism in C.
(ii) f«:C(—,z) = C(—,y) is a natural isomorphism.
(iii) f*:C(y,—) = C(z,—) is a natural isomorphism.

(i) = (ii):

Supppose f : & — y € C is an isomorphism. By Example 1.4.7, f, : C(—,z) = C(—,y) is a natural
transformation. For each ¢ € C, define (f.).! := ((f«).)~!. This exists since f is an isomorphism and
hence each component is an isomorphism so f, is a natural isomorphism.

(ii) = (iii):
Suppose f. : C(—,z) = C(—,y) is a natural isomorphism. By commutativity of figure 1.4.8, then
— - f = f* must also be an isomorphism, so f* is a natural isomorphism.

(iii) = (i):
Suppose f* : C(y, —) = C(x, —) is a natural isomorphism. By the Yoneda embedding ( Corollary 2.2.8),
the functor 3’ : C°P — SetC is fully faithful. Then, 3" defines a local bijection between hom-sets given
by

C(I, y) i> Hom(C(y, 7)7 C(‘T7 7))
Also, fully faithful functors reflect isomorphisms. Since f* : C(y,—) = C(x,—) is a natural isomor-

phism, this corresponds to an isomorphism f : * — y € C. Thus, f : * — y is an isomorphism in
C.
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Exercise 2.2.v. By the Yoneda lemma, natural endomorphisms of the contravariant power set functor P : Set°® — Set
correspond bijectively to endomorphisms of its representing object = {L, T}. Describe the natural
endomorphisms of P that correspond to each of the four elements of Hom(2, ). Do these functions
induce natural endomorphisms of the covariant power set functor?

The contravariant power set functor P : Set®® — Set is defined by sending a set A € Set°? to its power
set PA and a function f : A — Bto Pf = f~!: PB — PA. This is represented by the set Q = {1, T}
with

Set(A,Q) =2 PA (1)

defined by the bijection that associates a function f : A — € with the subset f~1(T) and associates
any subset A’ C A to xa : A — § that sends elements of A’ to T.

By the Yoneda lemma, since P : Set®® — Set is a functor and £ € Set°?, then we have the natural
isomorphism

Hom(Set’?(—,Q), P) = PQ
By the isomorphism (1) above, then

Hom(P, P) = Hom(Q2, Q)
The 4 elements of Hom(£2, ) are as follows:
d: T T, L—1;
true: T — T, L— T,
false : T —1, L—1;
swap: T —L1, L—T.
By definition, P(A) = {S| S C A} and letf € Hom(A4, Q) = {functions A — Q}. Then,

Ff={acAlf(a)=T}

GS(a):{T a€sS

= W o

1L a¢S

Now, id € Hom(2,{2) clearly corresponds to the natural endomorphism id : P = P. The map true
corresponds to the natural endomorphism true : P = P that is defined by the following components
(for each A € P):

truey : P(A) — P(A)
S— A

i.e., any subset of A is now “true” and all elements are also in A.

Analogously, the map false corresponds to the natural endomorphism false : P = P that is defined by
the following components (for each A € P):

falseq : P(A) — P(A)
S g

i.e., any subset of A is now “false” the new set contains no elements.

Lastly, the map swap corresponds to the natural endomorphism swap : P = P that is defined by the
following components (for each A € P):

swap 4 : P(A) — P(A)
S — s¢

i.e., if the subset were “true”, it is now “false”, and vice versa.
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Section 2.3. Universal Properties and Universal Elements

Exercise 2.3.iii. The set B4 of functions from a set A to a set B represents the contravariant functor Set(— x A, B) :
Set°? — Set. The universal element for this representation is a function

ev:BAx A— B

called the evaluation map. Define the evaluation map and describe its universal property, in analogy
with the universal bilinear map ® of Example 2.3.7.

Define the evaluation map ev : B4 x A — B by the following,.

ev: (f,a) = f(a)
for all f € BA,a € A.
As the contravariant functor Set(— x A, B) is represented by B4, then for all D € Set,
Set(D, B*) = Set(D x A, B)

This natural isomorphism is defined by associating any function g : D x A — B, with the function
G: D — B* such that
g(d): A— B

defined by
g(d)(a) = g(d;a)
And on the other hand, it associates a function h : D — B4 with

h:DxA— B
defined by

h(d, a) = h(d)(a)

Let f: D x A — B. The natural isomorphism associates f with a function f: D — BA. Consider the
naturality square induced by f that must hold:

Set(B4, BA) —=— Set(B“ x A, B)

7| l(fxm)*

Set(D,BA) T Set(D X A, B)

where f* is the usual notation for pre-composition by f.

Now, tracing 154 reveals that f factors uniquely through ev along a unique f : D — B4 such that

DxA—' B
7 Tev
fxida L

BAx A

comimutes.

Universal property of ev:

For arbitrary D € Set and function f: D x A — B, there exists a unique f : D — B“ such that

f:evo(fxidA)
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Section 2.4. The Category of Elements

Exercise 2.4.1i.

Exercise 2.4.iv.

Characterize the terminal objects of C/c.

C/c is the slice category over the object ¢ € C, formally denoted as [ C(—,c¢). Objects are morphisms
f:a — c. Morphisms in C/c from f: 2 — ¢ to g:y — ¢ is a morphism h : © — y such that

gh=1f
Let f € C/c be arbitrary. By definition, there exists a morphism g : f — id,. if and only if
f=ideg =g

Hence, for every f € C/c, there exists a unique morphism (f itself) such that f — id. € C/c. So we
have:

I’%C
\fdc
f
C

and id, is the terminal object of C/c.

Explain the sense in which the Sierpinski space is the universal topological space with an open subset.

The Sierpinski space is a topological space with two points, one open and one closed. Let the underlying
set of S be denoted {0, 1} and its open sets {&, {1},{0,1}}. By Section 2.1, there exists a bijection

Top(X,S) =2 O(X)

where X is a topological space and O : Top®® — Set is the functor that sends a space to its set of open
subsets. This bijection is defined by associating a function f : X — S € Top°? (X, S) with the open
subset f~1({1}) € O(X).

The objects in the category of elements [ O of the contravariant functor O are pairs (S, X) where
S € Top, X € O(S). The terminal object is the Sierpinski space with open set {1} C S. This is
because for any open set A C X, there exists a unique continuous function

xa: X —> S

st A=x'({1})

Hence, (S,{1}) € [ O is the terminal object, so the Sierpinski space is the universal topological space
with an open subset.
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Exercise 2.4.vi. For a locally small category C, regard the two-sided represented functor Hom(—, —) : C°P x C — Set
as a covariant functor of its domain C°? x C. The category of elements of Hom is called the twisted
arrow category. Justify this name by describing its objects and morphisms.

The category of elements of Hom, denoted [ Hom consists of the following:
Objects: Pairs (¢, z) for ¢ = (¢1,¢2) € C°P x C, € Hom(cq, ¢2). That is, objects are morphisms f € C.
Morphisms:

By definition, if h : (¢, f) = (¢/,g) is a morphism in [ Hom, for ¢ = (z,y) € C°? x C, ¢/ = (w,2) €
C°P x C, then Fh(f) = g where F is the functor Hom(—, —).

Denote hy : w — x € C°P and hy : y — z € C. If Fh(f) = g, this implies that

(h1)(fh2.) =g

Hence,

hafhi =g

That is, this commutes:

z\z<—© £

<
QLB

In summary: for any f, g € [ Hom, morphisms between f and g are pairs (j, k) such that this commutes:

N(—{Q £

% }

<
QLB

The arrows of j and k are reversed or “twisted”, justifying the name of the category as “twisted arrow
category”: it is a category of arrows in which morphisms between them twist the arrows.



