Chapter 2: Universal Properties, Representability, and the Yoneda Lemma

Section 2.1. Representable Functors

Exercise 2.1.i. For each of the three functors

$$1 \xrightarrow{0} 2$$
$$1 \xrightarrow{1} 2$$
$$1 \xleftarrow{!} 2$$

between the categories 1 and 2, describe the corresponding natural transformations between the covariant functors $Cat \Rightarrow Set$ represented by the categories 1 and 2.

1 is the category with one object (label it *) and its identity morphism. 2 is the category with two objects (label them 0 and 1), their identity morphisms, and one non-identity morphism usually labelled $0 \rightarrow 1$.

The covariant functor represented by 1 is $\operatorname{Hom}(1, -) : \operatorname{Cat} \to \operatorname{Set}, C \mapsto \operatorname{Hom}(1, C)$. This covariant functor is naturally isomorphic to the objects of C, and the covariant functor represented by 2 is naturally isomorphic to the morphisms of a category C. i.e.,

$$\operatorname{Hom}(\mathbb{1},\mathsf{C})\cong\operatorname{Ob}\mathsf{C}$$
$$\operatorname{Hom}(\mathbb{2},\mathsf{C})\cong\operatorname{Mor}\mathsf{C}$$

This second isomorphism associates the morphisms in C with where the two objects of 2 are sent in C (the endpoints of the arrow).

Now, consider the functor $\mathbb{1} \xrightarrow{0} \mathbb{2}$ that sends the object $* \in \mathbb{1}$ to $0 \in \mathbb{2}$. This induces the natural transformation $\operatorname{Hom}(\mathbb{2}, \mathsf{C}) \to \operatorname{Hom}(\mathbb{1}, \mathsf{C})$ denoted by 0^* and defined by the following.

$$\operatorname{Mor} \mathsf{C} \cong \operatorname{Hom}(2, \mathsf{C}) \xrightarrow{0^{\circ}} \operatorname{Hom}(1, \mathsf{C}) \cong \operatorname{Ob} \mathsf{C}$$
$$(F: 2 \to \mathsf{C}) \longmapsto 0^* F = F \circ 0$$

Similarly, consider the functor $\mathbb{1} \xrightarrow{1} \mathbb{2}$ that sends the object $* \in \mathbb{1}$ to $1 \in \mathbb{2}$. This induces the natural transformation $\operatorname{Hom}(\mathbb{2}, \mathsf{C}) \to \operatorname{Hom}(\mathbb{1}, \mathsf{C})$ denoted by 1^* and defined by the following.

$$\operatorname{Mor} \mathsf{C} \cong \operatorname{Hom}(2, \mathsf{C}) \xrightarrow{1^*} \operatorname{Hom}(1, \mathsf{C}) \cong \operatorname{Ob} \mathsf{C}$$
$$(F: 2 \to \mathsf{C}) \longmapsto 1^* F = F \circ 1$$

Lastly, consider the functor $2 \xrightarrow{!} 1$ that sends the objects in 2 to the single object $* \in 1$ and all morphisms to the identity of *. This induces the natural transformation $\operatorname{Hom}(1, \mathsf{C}) \to \operatorname{Hom}(2, \mathsf{C})$ denoted by !* and defined by the following.

$$Ob\mathsf{C} \cong Hom(\mathbb{1},\mathsf{C}) \xrightarrow{\mathfrak{l}^*} Hom(2,\mathsf{C}) \cong Mor\mathsf{C}$$
$$x \mapsto 1_x$$

where $x \in C$ is an object and 1_x is its identity morphism.

Exercise 2.1.ii. Prove that if $F : C \rightarrow Set$ is representable, then F preserves monomorphisms, i.e., sends every monomorphism in C to an injective function. Use the contrapositive to find a covariant set-valued functor defined on your favourite concrete category that is not representable.

Suppose $F : \mathsf{C} \to \mathsf{Set}$ is representable. Then, there exists some $c \in \mathsf{C}$ such that

 $F \cong \mathsf{C}(c, -)$

That is, there exists a natural transformation $\alpha : C \Rightarrow$ Set such that for all $x \in C$, $\alpha_x : Fx \to C(c, x)$ is an isomorphism and this commutes for all $f : x \to y \in C$.

$$\begin{array}{c} Fx \xrightarrow{\alpha_x} \mathsf{C}(c,x) \\ Ff & \alpha_y^{-1} & \downarrow f_* \\ Fy \xrightarrow{k} & \mathsf{C}(c,y) \end{array}$$

Now, let $f : x \to y \in \mathsf{C}$ be a monomorphism. Consider $Ff : Fx \to Fy \in \mathsf{Set}$. To show that Ff is injective, suppose that for some $x_1, x_2 \in Fx$,

$$Ff(x_1) = Ff(x_2)$$

By the above commutative diagram, then the following holds (α_y is an isomorphism),

$$Ff = \alpha_y^{-1} \circ f_* \circ \alpha_x$$

Hence, the following holds.

$$Ff(x_1) = Ff(x_2)$$
$$\alpha_y^{-1} \circ f_* \circ \alpha_x(x_1) = \alpha_y^{-1} \circ f_* \circ \alpha_x(x_2)$$
$$f_* \circ \alpha_x(x_1) = f_* \circ \alpha_x(x_2)$$

Since f_* is post-composition by f, then it follows that

$$f \circ \alpha_x(x_1) = f \circ \alpha_x(x_2)$$

Now, f is a monomorphism, and hence

$$\alpha_x(x_1) = \alpha_x(x_2)$$

As α_x is an isomorphism, then $x_1 = x_2$. Thus, Ff is injective so representable functors preserve monomorphisms.

An example of a non-representable functor is given by an extension of exercise 1.6.iv. Recall the functor F^{op} : Haus \hookrightarrow Top does not preserve monomorphisms. Hence, $U \circ F^{\text{op}}$: Haus \rightarrow Set (where U: Top \rightarrow Set is the forgetful functor) does not preserve monomorphisms. Hence, $G = U \circ F^{\text{op}}$ is not representable.

Exercise 2.1.v. The functor of Example 2.1.5(x) that sends a category to its collection of isomorphisms is a subfunctor of the functor of Example 2.1.5(x) that sends a category to its collection of morphisms. Define a functor between the representing categories I and 2 that induces the corresponding monic natural transformations between these representable functors.

Example 2.1.5(xi) defined iso : $Cat \rightarrow Set$ as the functor that sends a small category to its set of isomorphisms, and Example 2.1.5(x) defined mor : $Cat \rightarrow Set$ as sending a small category to its set of morphisms.

We have that $iso C \cong Hom(\mathbb{I}, C)$ and $Mor C \cong Hom(2, C)$ (as before). Hence, $iso C \hookrightarrow Mor C$, i.e., $Hom(\mathbb{I}, C) \hookrightarrow Hom(2, C)$ is induced by the functor $F : 2 \to \mathbb{I}$ given by mapping $0 \mapsto 0, 1 \mapsto 1$, and the morphism $!: 0 \to 1$ is mapped to the same morphism $0 \to 1 \in \mathbb{I}$:

$$\bullet \xrightarrow{!} \bullet \qquad \longmapsto \qquad \bullet \underbrace{\stackrel{!}{\underset{l^{-1}}{\overset{}}} \bullet}_{\underset{l^{-1}}{\overset{}}} \bullet$$

Section 2.2. The Yoneda Lemma

Exercise 2.2.ii. Explain why the Yoneda lemma does not dualize to classify natural transformations from an arbitrary set-valued functor to a represented functor.

 $\operatorname{Hom}(F, \operatorname{Hom}(c, -)) \cong Fc$ does not hold in general.

Consider $C = 1 = \{*, * \to *\}$ and let $c \in C$ be the single object. Suppose $Fc = \emptyset$ for some set-valued functor $F : C \to Set$. Then,

$$\operatorname{Hom}(\varnothing, \{*\}) = \{*\} \not\cong \varnothing$$

Hence, the Yoneda lemma does not classify natural transformations from an arbitrary set-valued functor to a represented functor.

- Exercise 2.2.iv. Prove the following strengthening of Lemma 1.2.3, demonstrating the equivalence between an isomorphism in a category and a **representable isomorphism** between the corresponding co- or contravariant represented functors: the following are equivalent:
 - (i) $f: x \to y$ is an isomorphism in C.
 - (ii) $f_* : \mathsf{C}(-, x) \Rightarrow \mathsf{C}(-, y)$ is a natural isomorphism.
 - (iii) $f^* : C(y, -) \Rightarrow C(x, -)$ is a natural isomorphism.

(i) \Rightarrow (ii):

Suppose $f: x \to y \in \mathsf{C}$ is an isomorphism. By Example 1.4.7, $f_*: \mathsf{C}(-, x) \Rightarrow \mathsf{C}(-, y)$ is a natural transformation. For each $c \in \mathsf{C}$, define $(f_*)_c^{-1} := ((f_*)_c)^{-1}$. This exists since f is an isomorphism and hence each component is an isomorphism so f_* is a natural isomorphism.

(ii) \Rightarrow (iii):

Suppose $f_* : C(-, x) \Rightarrow C(-, y)$ is a natural isomorphism. By commutativity of figure 1.4.8, then $- f = f^*$ must also be an isomorphism, so f^* is a natural isomorphism.

(iii) \Rightarrow (i):

Suppose $f^* : C(y, -) \Rightarrow C(x, -)$ is a natural isomorphism. By the Yoneda embedding (*Corollary 2.2.8*), the functor $y' : C^{op} \hookrightarrow Set^{\mathsf{C}}$ is fully faithful. Then, y' defines a local bijection between hom-sets given by

$$\mathsf{C}(x,y) \xrightarrow{\cong} \operatorname{Hom}(\mathsf{C}(y,-),\mathsf{C}(x,-))$$

Also, fully faithful functors reflect isomorphisms. Since $f^* : C(y, -) \Rightarrow C(x, -)$ is a natural isomorphism, this corresponds to an isomorphism $f : x \to y \in C$. Thus, $f : x \to y$ is an isomorphism in C.

Exercise 2.2.v. By the Yoneda lemma, natural endomorphisms of the contravariant power set functor $P : \mathsf{Set}^{\mathrm{op}} \to \mathsf{Set}$ correspond bijectively to endomorphisms of its representing object $\Omega = \{\bot, \top\}$. Describe the natural endomorphisms of P that correspond to each of the four elements of $\mathrm{Hom}(\Omega, \Omega)$. Do these functions induce natural endomorphisms of the covariant power set functor?

The contravariant power set functor $P : \mathsf{Set}^{\mathrm{op}} \to \mathsf{Set}$ is defined by sending a set $A \in \mathsf{Set}^{\mathrm{op}}$ to its power set PA and a function $f : A \to B$ to $Pf = f^{-1} : PB \to PA$. This is represented by the set $\Omega = \{\bot, \top\}$ with

 $\mathsf{Set}(A,\Omega) \cong PA$ (1)

defined by the bijection that associates a function $f : A \to \Omega$ with the subset $f^{-1}(\top)$ and associates any subset $A' \subseteq A$ to $\chi_{A'} : A \to \Omega$ that sends elements of A' to \top .

By the Yoneda lemma, since $P : \mathsf{Set}^{\mathrm{op}} \to \mathsf{Set}$ is a functor and $\Omega \in \mathsf{Set}^{\mathrm{op}}$, then we have the natural isomorphism

$$\operatorname{Hom}(\mathsf{Set}^{\operatorname{op}}(-,\Omega),P) \cong P\Omega$$

By the isomorphism (1) above, then

$$\operatorname{Hom}(P, P) \cong \operatorname{Hom}(\Omega, \Omega)$$

The 4 elements of $\operatorname{Hom}(\Omega, \Omega)$ are as follows:

- 1. id : $\top \mapsto \top$, $\bot \mapsto \bot$;
- 2. true : $\top \mapsto \top$, $\bot \mapsto \top$;
- 3. false : $\top \mapsto \bot, \bot \mapsto \bot;$
- 4. swap : $\top \mapsto \bot, \bot \mapsto \top$.

By definition, $P(A) = \{S \mid S \subseteq A\}$ and let $f \in \text{Hom}(A, \Omega) = \{\text{functions } A \to \Omega\}$. Then,

$$Ff = \{a \in A \mid f(a) = \top\}$$
$$GS(a) = \begin{cases} \top & a \in S \\ \bot & a \notin S \end{cases}$$

Now, id \in Hom (Ω, Ω) clearly corresponds to the natural endomorphism id : $P \Rightarrow P$. The map true corresponds to the natural endomorphism $\overline{\text{true}} : P \Rightarrow P$ that is defined by the following components (for each $A \in P$):

$$\overline{\text{true}}_A : P(A) \to P(A)$$
$$S \mapsto A$$

i.e., any subset of A is now "true" and all elements are also in A.

Analogously, the map false corresponds to the natural endomorphism $\overline{\text{false}} : P \Rightarrow P$ that is defined by the following components (for each $A \in P$):

$$\overline{\text{false}}_A : P(A) \to P(A)$$
$$S \mapsto \emptyset$$

i.e., any subset of A is now "false" the new set contains no elements.

Lastly, the map swap corresponds to the natural endomorphism $\overline{\text{swap}} : P \Rightarrow P$ that is defined by the following components (for each $A \in P$):

$$\overline{\mathrm{swap}}_A: P(A) \to P(A)$$
$$S \mapsto S^C$$

i.e., if the subset were "true", it is now "false", and vice versa.

Section 2.3. Universal Properties and Universal Elements

Exercise 2.3.iii. The set B^A of functions from a set A to a set B represents the contravariant functor $Set(- \times A, B)$: Set^{op} \rightarrow Set. The universal element for this representation is a function

$$ev: B^A \times A \to B$$

called the evaluation map. Define the evaluation map and describe its universal property, in analogy with the universal bilinear map \otimes of Example 2.3.7.

Define the evaluation map ev : $B^A \times A \to B$ by the following.

$$ev: (f, a) \mapsto f(a)$$

for all $f \in B^A, a \in A$.

As the contravariant functor $\mathsf{Set}(-\times A, B)$ is represented by B^A , then for all $D \in \mathsf{Set}$,

$$\mathsf{Set}(D, B^A) \cong \mathsf{Set}(D \times A, B)$$

This natural isomorphism is defined by associating any function $g: D \times A \to B$, with the function $\bar{g}: D \to B^A$ such that

$$\bar{g}(d): A \to B$$

defined by

$$\bar{g}(d)(a) = g(d,a)$$

And on the other hand, it associates a function $h: D \to B^A$ with

$$h: D \times A \to B$$

defined by

$$\hat{h}(d,a) = h(d)(a)$$

Let $f: D \times A \to B$. The natural isomorphism associates f with a function $\overline{f}: D \to B^A$. Consider the naturality square induced by \overline{f} that must hold:

where \bar{f}^* is the usual notation for pre-composition by \bar{f} .

Now, tracing 1_{B^A} reveals that f factors uniquely through ev along a unique $\overline{f}: D \to B^A$ such that

$$\begin{array}{ccc} D \times A & \stackrel{f}{\longrightarrow} & B \\ & & \uparrow^{\text{ev}} \\ & & B^A \times A \end{array}$$

commutes.

Universal property of ev:

For arbitrary $D \in \mathsf{Set}$ and function $f: D \times A \to B$, there exists a unique $\overline{f}: D \to B^A$ such that

$$f = \operatorname{ev} \circ (\bar{f} \times \operatorname{id}_A)$$

Section 2.4. The Category of Elements

Exercise 2.4.ii. Characterize the terminal objects of C/c.

C/c is the slice category over the object $c \in C$, formally denoted as $\int C(-,c)$. Objects are morphisms $f: x \to c$. Morphisms in C/c from $f: x \to c$ to $g: y \to c$ is a morphism $h: x \to y$ such that

gh = f

Let $f \in \mathsf{C}/c$ be arbitrary. By definition, there exists a morphism $g: f \to \mathrm{id}_c$ if and only if

$$f = \mathrm{id}_c g = g$$

Hence, for every $f \in C/c$, there exists a unique morphism (f itself) such that $f \to id_c \in C/c$. So we have:

and id_c is the terminal object of C/c.

Exercise 2.4.iv. Explain the sense in which the Sierpinski space is the universal topological space with an open subset.

The Sierpinski space is a topological space with two points, one open and one closed. Let the underlying set of S be denoted $\{0, 1\}$ and its open sets $\{\emptyset, \{1\}, \{0, 1\}\}$. By Section 2.1, there exists a bijection

$$\mathsf{Top}(X,S) \cong \mathcal{O}(X)$$

where X is a topological space and $\mathcal{O}: \mathsf{Top}^{\mathrm{op}} \to \mathsf{Set}$ is the functor that sends a space to its set of open subsets. This bijection is defined by associating a function $f: X \to S \in \mathsf{Top}^{\mathrm{op}}(X, S)$ with the open subset $f^{-1}(\{1\}) \in \mathcal{O}(X)$.

The objects in the category of elements $\int \mathcal{O}$ of the contravariant functor \mathcal{O} are pairs (S, X) where $S \in \mathsf{Top}, X \in \mathcal{O}(S)$. The terminal object is the Sierpinski space with open set $\{1\} \subset S$. This is because for any open set $A \subseteq X$, there exists a *unique* continuous function

$$\chi_A : X \to S$$

s.t. $A = \chi_A^{-1}(\{1\})$

Hence, $(S, \{1\}) \in \int \mathcal{O}$ is the terminal object, so the Sierpinski space is the universal topological space with an open subset.

Exercise 2.4.vi. For a locally small category C, regard the two-sided represented functor $\operatorname{Hom}(-,-): C^{\operatorname{op}} \times C \to Set$ as a covariant functor of its domain $C^{\operatorname{op}} \times C$. The category of elements of Hom is called the twisted arrow category. Justify this name by describing its objects and morphisms.

The category of elements of Hom, denoted \int Hom consists of the following:

<u>Objects</u>: Pairs (c, x) for $c = (c_1, c_2) \in \mathsf{C}^{\mathrm{op}} \times \mathsf{C}$, $x \in \operatorname{Hom}(c_1, c_2)$. That is, objects are morphisms $f \in \mathsf{C}$. Morphisms:

By definition, if $h : (c, f) \to (c', g)$ is a morphism in $\int \text{Hom}$, for $c = (x, y) \in C^{\text{op}} \times C$, $c' = (w, z) \in C^{\text{op}} \times C$, then Fh(f) = g where F is the functor Hom(-, -).

Denote $h_1: w \to x \in \mathsf{C}^{\mathrm{op}}$ and $h_2: y \to z \in \mathsf{C}$. If Fh(f) = g, this implies that

$$(h_1^*)(fh_{2_*}) = g$$

Hence,

$$h_2 f h_1 = g$$

That is, this commutes:

$$\begin{array}{ccc} x \xleftarrow{h_1} w \\ f \downarrow & \downarrow g \\ y \xrightarrow{h_2} z \end{array}$$

In summary: for any $f, g \in \int$ Hom, morphisms between f and g are pairs (j, k) such that this commutes:

$$\begin{array}{ccc} x \xleftarrow{j} & w \\ f \downarrow & \downarrow^g \\ y \xrightarrow{k} z \end{array}$$

The arrows of j and k are reversed or "twisted", justifying the name of the category as "twisted arrow category": it is a category of arrows in which morphisms between them twist the arrows.