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Chapter 2: Universal Properties, Representability, and the Yoneda
Lemma

Section 2.1. Representable Functors

Exercise 2.1.i. For each of the three functors
1

0−→ 2

1
1−→ 2

1
!←− 2

between the categories 1 and 2, describe the corresponding natural transformations between the co-
variant functors Cat ⇒ Set represented by the categories 1 and 2.

1 is the category with one object (label it ∗) and its identity morphism. 2 is the category with two
objects (label them 0 and 1), their identity morphisms, and one non-identity morphism usually labelled
0→ 1.

The covariant functor represented by 1 is Hom(1,−) : Cat → Set, C 7→ Hom(1,C). This covariant
functor is naturally isomorphic to the objects of C, and the covariant functor represented by 2 is
naturally isomorphic to the morphisms of a category C. i.e.,

Hom(1,C) ∼= ObC

Hom(2,C) ∼= MorC

This second isomorphism associates the morphisms in C with where the two objects of 2 are sent in C
(the endpoints of the arrow).

Now, consider the functor 1
0→ 2 that sends the object ∗ ∈ 1 to 0 ∈ 2. This induces the natural

transformation Hom(2,C)→ Hom(1,C) denoted by 0∗ and defined by the following.

MorC ∼= Hom(2,C)
0∗−→ Hom(1,C) ∼= ObC

(F : 2→ C) 7−→ 0∗F = F ◦ 0

Similarly, consider the functor 1
1→ 2 that sends the object ∗ ∈ 1 to 1 ∈ 2. This induces the natural

transformation Hom(2,C)→ Hom(1,C) denoted by 1∗ and defined by the following.

MorC ∼= Hom(2,C)
1∗−→ Hom(1,C) ∼= ObC

(F : 2→ C) 7−→ 1∗F = F ◦ 1

Lastly, consider the functor 2
!→ 1 that sends the objects in 2 to the single object ∗ ∈ 1 and all

morphisms to the identity of ∗. This induces the natural transformation Hom(1,C) → Hom(2,C)
denoted by !∗ and defined by the following.

ObC ∼= Hom(1,C)
!∗−→ Hom(2,C) ∼= MorC

x 7→ 1x

where x ∈ C is an object and 1x is its identity morphism.
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Exercise 2.1.ii. Prove that if F : C → Set is representable, then F preserves monomorphisms, i.e., sends every
monomorphism in C to an injective function. Use the contrapositive to find a covariant set-valued
functor defined on your favourite concrete category that is not representable.

Suppose F : C→ Set is representable. Then, there exists some c ∈ C such that

F ∼= C(c,−)

That is, there exists a natural transformation α : C ⇒ Set such that for all x ∈ C, αx : Fx → C(c, x)
is an isomorphism and this commutes for all f : x→ y ∈ C.

Fx C(c, x)

Fy C(c, y)

αx

Ff f∗

αy

α−1
y

Now, let f : x → y ∈ C be a monomorphism. Consider Ff : Fx → Fy ∈ Set. To show that Ff is
injective, suppose that for some x1, x2 ∈ Fx,

Ff(x1) = Ff(x2)

By the above commutative diagram, then the following holds (αy is an isomorphism),

Ff = α−1
y ◦ f∗ ◦ αx

Hence, the following holds.

Ff(x1) = Ff(x2)

α−1
y ◦ f∗ ◦ αx(x1) = α−1

y ◦ f∗ ◦ αx(x2)

f∗ ◦ αx(x1) = f∗ ◦ αx(x2)

Since f∗ is post-composition by f , then it follows that

f ◦ αx(x1) = f ◦ αx(x2)

Now, f is a monomorphism, and hence

αx(x1) = αx(x2)

As αx is an isomorphism, then x1 = x2. Thus, Ff is injective so representable functors preserve
monomorphisms.

An example of a non-representable functor is given by an extension of exercise 1.6.iv. Recall the
functor F op : Haus ↪→ Top does not preserve monomorphisms. Hence, U ◦ F op : Haus → Set (where
U : Top→ Set is the forgetful functor) does not preserve monomorphisms. Hence, G = U ◦ F op is not
representable.

Exercise 2.1.v. The functor of Example 2.1.5(xi) that sends a category to its collection of isomorphisms is a subfunctor
of the functor of Example 2.1.5(x) that sends a category to its collection of morphisms. Define a
functor between the representing categories I and 2 that induces the corresponding monic natural
transformations between these representable functors.

Example 2.1.5(xi) defined iso : Cat → Set as the functor that sends a small category to its set of
isomorphisms, and Example 2.1.5(x) defined mor : Cat→ Set as sending a small category to its set of
morphisms.
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We have that isoC ∼= Hom(I,C) and MorC ∼= Hom(2,C) (as before). Hence, isoC ↪→ MorC, i.e.,
Hom(I,C) ↪→ Hom(2,C) is induced by the functor F : 2→ I given by mapping 0 7→ 0, 1 7→ 1, and the
morphism ! : 0→ 1 is mapped to the same morphism 0→ 1 ∈ I:

• • 7−→ • •!
!

!−1

Section 2.2. The Yoneda Lemma

Exercise 2.2.ii. Explain why the Yoneda lemma does not dualize to classify natural transformations from an arbitrary
set-valued functor to a represented functor.

Hom(F,Hom(c,−)) ∼= Fc does not hold in general.

Consider C = 1 = {∗, ∗ → ∗} and let c ∈ C be the single object. Suppose Fc = ∅ for some set-valued
functor F : C→ Set. Then,

Hom(∅, {∗}) = {∗} 6∼= ∅

Hence, the Yoneda lemma does not classify natural transformations from an arbitrary set-valued functor
to a represented functor.

Exercise 2.2.iv. Prove the following strengthening of Lemma 1.2.3, demonstrating the equivalence between an isomor-
phism in a category and a representable isomorphism between the corresponding co- or contravari-
ant represented functors: the following are equivalent:

(i) f : x→ y is an isomorphism in C.

(ii) f∗ : C(−, x)⇒ C(−, y) is a natural isomorphism.

(iii) f∗ : C(y,−)⇒ C(x,−) is a natural isomorphism.

(i) ⇒ (ii):

Supppose f : x → y ∈ C is an isomorphism. By Example 1.4.7, f∗ : C(−, x) ⇒ C(−, y) is a natural
transformation. For each c ∈ C, define (f∗)

−1
c := ((f∗)c)

−1. This exists since f is an isomorphism and
hence each component is an isomorphism so f∗ is a natural isomorphism.

(ii) ⇒ (iii):

Suppose f∗ : C(−, x) ⇒ C(−, y) is a natural isomorphism. By commutativity of figure 1.4.8, then
− · f = f∗ must also be an isomorphism, so f∗ is a natural isomorphism.

(iii) ⇒ (i):

Suppose f∗ : C(y,−)⇒ C(x,−) is a natural isomorphism. By the Yoneda embedding (Corollary 2.2.8 ),
the functor y′ : Cop ↪→ SetC is fully faithful. Then, y′ defines a local bijection between hom-sets given
by

C(x, y)
∼=−→ Hom(C(y,−),C(x,−))

Also, fully faithful functors reflect isomorphisms. Since f∗ : C(y,−) ⇒ C(x,−) is a natural isomor-
phism, this corresponds to an isomorphism f : x → y ∈ C. Thus, f : x → y is an isomorphism in
C.
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Exercise 2.2.v. By the Yoneda lemma, natural endomorphisms of the contravariant power set functor P : Setop → Set
correspond bijectively to endomorphisms of its representing object Ω = {⊥,>}. Describe the natural
endomorphisms of P that correspond to each of the four elements of Hom(Ω,Ω). Do these functions
induce natural endomorphisms of the covariant power set functor?

The contravariant power set functor P : Setop → Set is defined by sending a set A ∈ Setop to its power
set PA and a function f : A→ B to Pf = f−1 : PB → PA. This is represented by the set Ω = {⊥,>}
with

Set(A,Ω) ∼= PA (1)

defined by the bijection that associates a function f : A → Ω with the subset f−1(>) and associates
any subset A′ ⊆ A to χA′ : A→ Ω that sends elements of A′ to >.

By the Yoneda lemma, since P : Setop → Set is a functor and Ω ∈ Setop, then we have the natural
isomorphism

Hom(Setop(−,Ω), P ) ∼= PΩ

By the isomorphism (1) above, then

Hom(P, P ) ∼= Hom(Ω,Ω)

The 4 elements of Hom(Ω,Ω) are as follows:

1. id : > 7→ >,⊥7→⊥;

2. true : > 7→ >,⊥7→ >;

3. false : > 7→⊥,⊥7→⊥;

4. swap : > 7→⊥,⊥7→ >.

By definition, P (A) = {S | S ⊆ A} and letf ∈ Hom(A,Ω) = {functions A→ Ω}. Then,

Ff = {a ∈ A | f(a) = >}

GS(a) =

{
> a ∈ S
⊥ a /∈ S

Now, id ∈ Hom(Ω,Ω) clearly corresponds to the natural endomorphism id : P ⇒ P . The map true
corresponds to the natural endomorphism true : P ⇒ P that is defined by the following components
(for each A ∈ P ):

trueA : P (A)→ P (A)

S 7→ A

i.e., any subset of A is now “true” and all elements are also in A.

Analogously, the map false corresponds to the natural endomorphism false : P ⇒ P that is defined by
the following components (for each A ∈ P ):

falseA : P (A)→ P (A)

S 7→ ∅

i.e., any subset of A is now “false” the new set contains no elements.

Lastly, the map swap corresponds to the natural endomorphism swap : P ⇒ P that is defined by the
following components (for each A ∈ P ):

swapA : P (A)→ P (A)

S 7→ SC

i.e., if the subset were “true”, it is now “false”, and vice versa.
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Section 2.3. Universal Properties and Universal Elements

Exercise 2.3.iii. The set BA of functions from a set A to a set B represents the contravariant functor Set(−× A,B) :
Setop → Set. The universal element for this representation is a function

ev : BA ×A→ B

called the evaluation map. Define the evaluation map and describe its universal property, in analogy
with the universal bilinear map ⊗ of Example 2.3.7.

Define the evaluation map ev : BA ×A→ B by the following.

ev : (f, a) 7→ f(a)

for all f ∈ BA, a ∈ A.

As the contravariant functor Set(−×A,B) is represented by BA, then for all D ∈ Set,

Set(D,BA) ∼= Set(D ×A,B)

This natural isomorphism is defined by associating any function g : D × A → B, with the function
ḡ : D → BA such that

ḡ(d) : A→ B

defined by
ḡ(d)(a) = g(d, a)

And on the other hand, it associates a function h : D → BA with

ĥ : D ×A→ B

defined by
ĥ(d, a) = h(d)(a)

Let f : D×A→ B. The natural isomorphism associates f with a function f̄ : D → BA. Consider the
naturality square induced by f̄ that must hold:

Set(BA, BA) Set(BA ×A,B)

Set(D,BA) Set(D ×A,B)

∼=

f̄∗ (f̄×idA)∗

∼=

where f̄∗ is the usual notation for pre-composition by f̄ .

Now, tracing 1BA reveals that f factors uniquely through ev along a unique f̄ : D → BA such that

D ×A B

BA ×A

f

f̄×idA

ev

commutes.

Universal property of ev:

For arbitrary D ∈ Set and function f : D ×A→ B, there exists a unique f̄ : D → BA such that

f = ev ◦ (f̄ × idA)
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Section 2.4. The Category of Elements

Exercise 2.4.ii. Characterize the terminal objects of C/c.

C/c is the slice category over the object c ∈ C, formally denoted as
∫
C(−, c). Objects are morphisms

f : x→ c. Morphisms in C/c from f : x→ c to g : y → c is a morphism h : x→ y such that

gh = f

Let f ∈ C/c be arbitrary. By definition, there exists a morphism g : f → idc if and only if

f = idcg = g

Hence, for every f ∈ C/c, there exists a unique morphism (f itself) such that f → idc ∈ C/c. So we
have:

x c

c

f

f
idc

and idc is the terminal object of C/c.

Exercise 2.4.iv. Explain the sense in which the Sierpinski space is the universal topological space with an open subset.

The Sierpinski space is a topological space with two points, one open and one closed. Let the underlying
set of S be denoted {0, 1} and its open sets {∅, {1}, {0, 1}}. By Section 2.1, there exists a bijection

Top(X,S) ∼= O(X)

where X is a topological space and O : Topop → Set is the functor that sends a space to its set of open
subsets. This bijection is defined by associating a function f : X → S ∈ Topop(X,S) with the open
subset f−1({1}) ∈ O(X).

The objects in the category of elements
∫
O of the contravariant functor O are pairs (S,X) where

S ∈ Top, X ∈ O(S). The terminal object is the Sierpinski space with open set {1} ⊂ S. This is
because for any open set A ⊆ X, there exists a unique continuous function

χA :X → S

s.t. A = χ−1
A ({1})

Hence, (S, {1}) ∈
∫
O is the terminal object, so the Sierpinski space is the universal topological space

with an open subset.
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Exercise 2.4.vi. For a locally small category C, regard the two-sided represented functor Hom(−,−) : Cop × C → Set
as a covariant functor of its domain Cop × C. The category of elements of Hom is called the twisted
arrow category. Justify this name by describing its objects and morphisms.

The category of elements of Hom, denoted
∫

Hom consists of the following:

Objects: Pairs (c, x) for c = (c1, c2) ∈ Cop×C, x ∈ Hom(c1, c2). That is, objects are morphisms f ∈ C.

Morphisms:

By definition, if h : (c, f) → (c′, g) is a morphism in
∫

Hom, for c = (x, y) ∈ Cop × C, c′ = (w, z) ∈
Cop × C, then Fh(f) = g where F is the functor Hom(−,−).

Denote h1 : w → x ∈ Cop and h2 : y → z ∈ C. If Fh(f) = g, this implies that

(h∗1)(fh2∗) = g

Hence,

h2fh1 = g

That is, this commutes:

x w

y z

f

h1

g

h2

In summary: for any f, g ∈
∫

Hom, morphisms between f and g are pairs (j, k) such that this commutes:

x w

y z

f

j

g

k

The arrows of j and k are reversed or “twisted”, justifying the name of the category as “twisted arrow
category”: it is a category of arrows in which morphisms between them twist the arrows.
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