
Math 9511L

1 Chapter 1: Categories, functors, natural transformations

Section 1.2. Duality

Exercise 1.2.ii. (i) Show that a morphism f : x→ y is a split epimorphism in a category C if and only if for all c ∈ C,
post-composition f∗ : C(c, x)→ C(c, y) defines a surjective function.

⇒: Suppose f : x→ y is a split epimorphism. That is, there exists some h : y → x such that

fh = 1y

Let c ∈ C and g ∈ C(c, y) be arbitrary. Then, hg : c→ x hence hg ∈ C(c, x). By definition of f∗,
then

f∗(hg) = fhg = 1yg = g

Since g ∈ C(c, y) was arbitrary, it follows that f∗ is surjective for all c ∈ C.

⇐: Conversely, suppose that f∗ : C(c, x)→ C(c, y) is surjective for every c ∈ C.

Take c = y. Then, since f∗ : C(y, x) → C(y, y) is surjective, then there exists some h ∈ C(y, x)
such that

f∗h = 1y  fh = 1y

so f is a split epimorphism.

(ii) Argue by duality that f is a split monomorphism if and only if for all c ∈ C, pre-composition
f∗ : C(y, c)→ C(x, c) is a surjective function.

Since (i) holds for any category C, then the statement holds in the category Cop. That is, fop : y →
x is a split epimorphism in Cop if and only if fop∗ : Cop(c, y)→ Cop(c, x) is surjective for all c ∈ Cop.
This translates to f∗ : C(y, c)→ C(x, c) since Cop(c, x) = C(x, c). That is, post-composition with
fop in Cop is the same as pre-composition with f in its opposite category C.

Also, fop : y → x is a split epimorphism iff there exists some hop : x→ y such that

x y xhop fop

where fophop = 1x. This implies that

x y xh f

and hf = 1x. By definition, this means that f : x→ y is a split monomorphism.

Hence, by (i), f is a split monomorphism if and only if f∗ : C(y, c)→ C(x, c) is surjective.

Exercise 1.2.v. Show that the inclusion Z ↪→ Q is both a monomorphism and an epimorphism in the category Ring of
rings. Conclude that a map that is both monic and epic need not be an isomorphism.

Let ι : Z ↪→ Q denote the inclusion.

• ι is a monomorphism:

Let R be an arbitrary unital ring in the category Ring. Let h, k : R⇒ Z be ring homomorphisms
such that ιh = ιk. Let r ∈ R be arbitrary. Then,

ιh(r) = ιk(r)  h(r) = k(r)

since ι is the inclusion map. Hence, h = k. Thus, ι is a monomorphism.
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• ι is an epimorphism:

Let S be an arbitrary unital ring and h, k : Q⇒ S be such that hι = kι.

Claim: If h, k : Q⇒ S are ring homomorphisms such that h(n) = k(n) for all n ∈ Z, then h = k.
i.e., ring homomorphisms from Q are uniquely determined by the image of Z.

Proof of claim: Let q = a
b ∈ Q be arbitrary. Then,

h
(a
b

)
= h(a)h

(
1

b

)
= k(a)h

(
1

b

)
= k

(a
b
b
)
h

(
1

b

)
= k

(a
b

)
k(b)h

(
1

b

)
= k

(a
b

)
h(b)h

(
1

b

)
= k

(a
b

)
h(1)

 h
(a
b

)
= k

(a
b

)
As q ∈ Q was arbitrary, then h = k.

Now, since hι = kι by assumption, then h(n) = k(n) for all n ∈ Z. By the claim, then h = k.
Thus, ι is an epimorphism.

Therefore, even though Z ↪→ Q is epic and monic, it is not an isomorphism (it is not surjective).

Exercise 1.2.vi. Prove that a morphism that is both a monomorphism and a split epimorphism is necessarily an isomor-
phism. Argue by duality that a split monomorphism that is an epimorphism is also an isomorphism.

Let f : x→ y be an arbitrary morphism in a category C such that:

• f is a monomorphism: for all h, k : w ⇒ x, if fh = fk, then h = k.

• f is a split epimorphism: there exists some g : y → x such that fg = 1y.

Now, consider fgf : x→ y. Since fg = 1y, then

fgf = 1yf = f1x

That is, f(gf) = f(1x). Since f is a monomorphism and gf, 1x : x⇒ x, then gf = 1x.

Therefore, there exists some g : y → x such that fg = 1y and gf = 1x, so f is an isomorphism.

Now, since the above statement holds for all categories C, then it also holds in Cop. Let fop : y → x be
a morphism in Cop such that fop is a monomorphism and a split epimorphism. Then, by above, fop

is an isomorphism which implies that f is also an isomorphism (notion of isomorphism is self-dual).
Now, fop is a monomorphism  f is an epimorphism and fop is a split epimorphism  f is a split
monomorphism as follows.

• fop is a monomorphism: for all hop, kop : w ⇒ y, if fophop = fopkop, then hop = kop.

– This is precisely the statement that f : x→ y is such that for all h, k : y ⇒ w, if hf = kf ,
then h = k. That is, f is an epimorphism.

• fop is a split epimorphism: there exists some gop : x→ y such that fopgop = 1x.

– As in exercise 1.2.ii (ii), then f is a split monomorphism.

Therefore, if f is an epimorphism and a split monomorphism, then f is an isomorphism.
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Section 1.3. Functoriality

Exercise 1.3.iii. Find an example to show that the objects and morphisms in the image of a functor F : C→ D do not
necessarily define a subcategory of D.

Let C be the category defined by 4 objects x, y, z, w and morphisms x → y, z → w and the identity
morphisms.

Let D be the category defined by 3 objects a, b, c and morphisms a→ b, b→ c, a→ c, and the identity
morphisms.

Consider the functor F : C→ D given by the following

F (x) = a, F (y) = b = F (z), and F (w) = c

and F extends uniquely to the morphisms. The image of F is not a category. It consists of objects
a, b, c and morphisms Fx→ Fy : a→ b, Fz → Fw : b→ c and the identity morphisms. But, for F (C)
to be a category, there would also need to be a composite morphism a→ c. By this construction, such
a morphism does not exist. Hence, the image of F does not define a subcategory of D.

Exercise 1.3.viii. Lemma 1.3.8. shows that functors preserve isomorphisms. Find an example to demonstrate that
functors need not reflect isomorphisms: that is, find a functor F : C → D and a morphism f in C
so that Ff is an isomorphism in D but f is not an isomorphism in C.

Let C = Top∗ (category of based topological spaces) and D = Group. Let F : C → D be the functor
F = π1. Consider the morphism ι : S1 ↪→ R2 \ {(0, 0)} in Top∗ where both spaces have basepoint
(1, 0). Then, clearly S1 6∼= R2 \ {(0, 0)} in Top∗. However, π1(S1) ∼= π1(R2 \ {(0, 0)} ∼= Z. Hence, Fι
is an isomorphism in Group but ι ∈ Top∗ is not an isomorphism. Therefore, functors need not reflect
isomorphisms.

Exercise 1.3.ix. For any group G, we may define other groups:

• the center Z(G) = {h ∈ G | hg = gh ∀g ∈ G}, a sbgroup of G,

• the commutator subgroup C(G), the subgroup generated by elements ghg−1h−1 for any g, h ∈ G,
and

• the automorphism group Aut(G), the group of isomorphisms ϕ : G→ G in Group.

Trivially, all three constructions define a functor from the discrete category of groups (with only identity
morphisms) to Group. Are these constructions functorial in

• the isomorphisms of groups? That is, do they extend to functors Groupiso → Group?

• the epimorphisms of groups? That is, do they extend to functors Groupepi → Group?

• all homomorphisms of groups? That is, do they extend to functors Group→ Group?

First, note that the constructions send objects (groups) to objects. Hence, to check functoriality, it
suffices to check the morphism axioms.

(1) Groupiso → Group:

In Groupiso, if f : G → H is a morphism, then G ∼= H (G and H are isomorphic groups). By
results in group theory, then

Z(G) ∼= Z(H)

C(G) ∼= C(H)

Aut(G) ∼= Aut(H)
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In particular, denoting F1 as the functor Z(−), F2 as the functor C(−), and F3 as the functor
Aut(−), then in Group, there are morphisms F1f : Z(G) → Z(H), F2f : C(G) → C(H), F3f :
Aut(G)→ Aut(H) (in fact, they are isomorphisms).

To check the functoriality axioms, let f, g ∈ Groupiso be such that f : G → H, g : H → J for
groups G,H, J and f, g group isomorphisms. Then, F1gF1f = F1(gf) by construction and the
same holds for F2, F3. Also, for any G ∈ Groupiso, Fi(1G) = 1FiG

. Hence, these constructions are
functorial in the isomorphisms of groups.

(2) Groupepi → Group:

Suppose f : G� H ∈ Groupepi is a surjective group homomorphism.

Z(−):

Define the action of F1 = Z(−) on homomorphism f by f |Z(G) : Z(G) → Z(H). This is indeed
a homomorphism. Let g ∈ Z(G) be arbitrary. To see that f(g) ∈ Z(H), let h ∈ H be arbitrary.
Then, since f is surjective, there exists some g′ ∈ G such that

f(g′) = h

Then,
f(g)h = f(g)f(g′)

Since f is a homomorphism, then
f(g)h = f(gg′)

Since g ∈ Z(G), then gg′ = g′g and hence

f(g)h = f(g′g)

f(g)h = f(g′)f(g)

⇒ f(g)h = hf(g)

Since h ∈ H was arbitrary, then f(g) ∈ Z(H) and f : Z(G) → Z(H) defines a homomorphism,
so (Z−) : Groupepi → Group is a functor.

Aut(−):

If f : G → H is a homomorphism, what property must it have for Aut(f) to be defined? Let
ϕ ∈ G. If Aut(f) : Aut(G)→ Aut(H) exists, then the following must hold.

G G

H H

f

ϕ

f
f−1

That is, f−1 must exist, so f must be an isomorphism. For every ϕ ∈ Aut(G), define

Aut(f)(ϕ) = f ◦ ϕ ◦ f−1

This is a functor if and only if f is an isomorphism. Suppose G
f→ H

g→ K are group isomorphisms.
Then, for any ϕ ∈ Aut(G), the following holds.

Aut(g ◦ f)(ϕ) = (g ◦ f) ◦ ϕ ◦ (g ◦ f)−1

= g ◦ f ◦ ϕ ◦ f−1 ◦ g−1

= Aut(g)(f ◦ ϕ ◦ f−1)

⇒ Aut(g ◦ f)(ϕ) = Aut(g) ◦Aut(f)(ϕ)

Also, it is clear that Aut(idG) = idAut(G). Hence, Aut(−) defines a functor if and only if f is an
isomorphism. That is, Aut(−) : Groupepi → Group does not define a functor.
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(3) Group→ Group:

Suppose f : G→ H ∈ Group is a group homomorphism. From above, since f is not necessarily an
isomorphism, then Aut(−) : Group → Group is not a functor. Also, Z(−) : Group → Group does
not define a functor. To see this, consider Z/2Z = S2 ↪→ S3 given by1 2

2 1

 7→
1 2 3

2 1 3


Since Z(S2) = S2, this does not preserve centers (as (213) /∈ Z(S3)), so Z(−) : Group→ Group is
not a functor.
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Section 1.4. Naturality

Exercise 1.4.i. Suppose α : F ⇒ G is a natural isomorphism. Show that the inverses of the component morphisms
define the components of a natural isomorphism α−1 : G⇒ F .

Let C,D be categories and F,G : C ⇒ D be functors such that α : F ⇒ G is a natural isomorphism.
By definition, then αc : Fc → Gc is an isomorphism for every c ∈ C. That is, for each c ∈ C, there
exists a morphism α−1c : Gc→ Fc ∈ C such that

αcα
−1
c = 1Gc

and
α−1c αc = 1Fc

Define α−1 : G⇒ F using the maps α−1c as the components of α. Now, let f : c→ c′ be an arbitrary
morphism in C. Since α : F ⇒ G, then the following commutes:

Fc Gc

Fc′ Gc′

Ff

αc

Gf

αc′

That is, for all c, c′ ∈ C,
Gfαc = αc′Ff

Pre-composing both sides by α−1c , we obtain

Gfαcα
−1
c = αc′Ffα

−1
c

Gf1Gc = αc′Ffα
−1
c

Post-composing by α−1c′ , then

α−1c′ Gf = α−1c′ αc′Ffα
−1
c

⇒ α−1c′ Gf = Ffα−1c

That is, the following commutes for all f : c→ c′.

Fc Gc

Fc′ Gc′

Ff

α−1
c

Gf

α−1

c′

As c ∈ C was arbitrary, then the components α−1c define a natural transformation α−1 : G⇒ F . Also,
since each α−1c is an isomorphism, then α−1 is in fact a natural isomorphism.

Exercise 1.4.iv. In the notation of Example 1.4.7, prove that distinct parallel morphisms f, g : c ⇒ d define distinct
natural transformations

f∗, g∗ : C(−, c)⇒ C(−d, ) and f∗, g∗ : C(d,−)⇒ C(c,−)

by post- and pre-composition.

By Example 1.4.7 (p. 27), f∗, g∗, f
∗, g∗ define natural transformations. It remains to show that distinct

f, g : c⇒ d define distinct natural transformations in both cases.
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Suppose f∗ = g∗ are such that C(−, c)
f∗
⇒
g∗

C(−, d). Since f∗ = g∗, then (f∗)c = (g∗)c. Hence, applying

this to the morphism idc ∈ C(c, c),

(f∗)c(idc) = (g∗)c(idc)

⇒ f = g

Thus, if f 6= g, then f∗ and g∗ define distinct natural transformations.

Analogously, suppose that f∗ = g∗ are such that C(c,−)
f∗

⇒
g∗

C(d,−). Since f∗ = g∗, then (f∗)c = (g∗)c.

Hence, applying this to the morphism idc ∈ C(c, c), in the same way as above, f = g.
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Section 1.5. Equivalence of categories

Exercise 1.5.xi. Consider the functors Ab → Group (inclusion), Ring → Ab (forgetting the multiplication), (−)× :
Ring → Group (taking the group of units), Ring → Rng (inclusion), Field → Ring (inclusion), and
ModR → Ab (forgetful). Determine which functors are full, which are faithful, and which are essentially
surjective. Do any define an equivalence of categories?

A summary:

Functor Full Faithful Essentially surjective Equivalence

Ab ↪→ Group �Yes �Yes × No × No

Ring→ Ab × No �Yes × No × No

(−)× : Ring→ Group × No × No × No * × No

Ring ↪→ Rng × No �Yes × No × No

Field ↪→ Ring �Yes �Yes × No × No

ModR → Ab × No �Yes �Yes × No

First, note that by Theorem 1.5.9 (characterization of category equivalences), a functor defines an
equivalence of categories if and only if it is fully faithful and essentially surjective.

1. Ab ↪→ Group.

• Ab ↪→ Group is fully faithful.
The inclusion map is clearly injective on objects. Also, any morphism in Ab is also a morphism
in Group. Hence, Ab is a full subcategory of Group, and hence the inclusion functor is full and
faithful.

• Ab ↪→ Group is not essentially surjective because there exist non-abelian groups (e.g., the
dihedral group D6).

 since Ab ↪→ Group is not essentially surjective, it is not an equivalence of categories.

2. Ring→ Ab.

Denote F : Ring→ Ab.

• F is not full.
There does not exist a ring homomorphism ϕ : Z/nZ → Z but there does exist a group
homomorphism Z/nZ→ Z given by the trivial homomorphism, i.e., [x] 7→ 0 for all x ∈ Z/nZ.
Hence, F is not surjective on hom-sets, so F is not full.

• F is faithful.
Let ϕ : R→ S be an arbitrary ring homomorphism in Ring. Then, ϕ is a group homomorphism
of abelian groups with additional structure. Thus, if ϕ 6= ψ ∈ Ring, then Fϕ 6= Fψ in Ab.
That is ϕ 6= ψ in Ab. Hence,

Ring(x, y)→ Ab(x, y) is injective

so F is a faithful functor.

• F is not essentially surjective.
There exist abelian groups that cannot admit a ring structure (with unity). First note that
for any finite abelian group, it is the product of finite cyclic groups, and hence it can admit
a ring structure. Thus, the only possible candidates for groups that cannot admit a ring
structure are infinite groups.
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Consider G = Q/Z ∈ Ab. Any r + Z ∈ Q/Z has finite additive order. If r = m
n for

m,n ∈ Z, n > 0, then

n(r + Z) = m+ Z = Z = e  identity in Q/Z

Thus, |r + Z| divides n and so |r + Z| is finite.
Also, notice that for any n ∈ Z, 1

n ∈ Q/Z has additive order n.

Claim: Q/Z cannot admit a ring structure.
To see this, for the purpose of contradiction suppose that Q/Z is a ring with unity. Since every
element of Q/Z has finite additive order, then as a ring, Q/Z must have finite characteristic,
say char Q/Z = b where b is the smallest positive number such that

1 + 1 + · · ·+ 1 = b · 1 = 0

⇒ b · x = 0 for all x ∈ Q/Z

Hence, every x ∈ Q/Z must have additive order that divides b.
This is a contradiction to the fact that for any n ∈ Z, | 1n | = n. That is, the additive orders
of elements of Q/Z are unbounded, and hence cannot be bounded by char Q/Z. Therefore,
Q/Z cannot admit a ring structure.
Therefore, there exist abelian groups that cannot admit a ring structure, so the functor
F : Ring→ Ab is not essentially surjective on objects.

 since F is not full/not essentially surjective, it is not an equivalence of categories.

3. (−)× : Ring→ Group.

• (−)× is not full.
In Ring, Z is the initial ring (Example 1.6.15). Hence, for any R ∈ Ring, there exists a unique
ring homomorphism

ϕ : Z→ R

Let R = Z/pZ for some prime p > 2. Then, there exists a unique ring homomorphism
ϕ : Z→ Z/pZ. Applying (−)×, Z× ∼= Z/2Z and (Z/pZ)× ∼= Z/(p− 1)Z. But, there exist two
distinct group homomorphisms

Z× → (Z/pZ)×

That is, there is the trivial group homomorphism and the group homomorphism that sends
1 7→ x where x ∈ (Z/pZ)× is the unique element of order 2. Therefore,

(−)× : Ring(x, y)→ Group(x, y) is not surjective.

That is, (−)× is not full.

• (−)× is not faithful.
Let L be a field and consider the polynomial ring L[x]. Denote the automorphisms that fix
L by:

M := {ϕ ∈ Aut(L[x]) | ϕ(`) = ` ∀` ∈ L} = {ϕ(x) = ax+ b | a ∈ L×, b ∈ L}

Since L[x]× = L×, then for any ϕ ∈M , ϕ
(−)×7−→ 1L× . But there are many distinct elements in

M . Therefore,

Ring(L[x], L[x])→ Group(L×, L×) is not injective (in general).

Hence, (−)× is not faithful.
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• (−)× is not essentially surjective.
(−)× is not essentially surjective because Z/5Z is not isomorphic to the group of units of any
unital ring in Ring.
For the purpose of contradiction, suppose R ∈ Ring is a ring with unity such that |R×| = 5.
If 1 denotes the unital element, it follows that (−1) ∈ R× as well. If 1 6= −1, then it would
follow that |R×| is even. Since |R×| = 5 is odd, then it follows that 1 = −1. That is, R
contains a subfield isomorphic to Z/2Z.
Claim: char R = 2.
If char R 6= 2, then for any u ∈ R×, there exists −u ∈ R× and if u = −u, then |R×| is either
infinite or even. Since |R×| = 5, it follows that char R = 2.
Now, char R = 2 implies that R may contain subfields of characteristic 2. None of these
subfields can contain transcendentals since |R×| is finite. Also, none of these subfields can
be larger than Z/2Z since such a subfield would contain a (2n − 1)st root of unity, and
2n − 1 | 5⇔ n = 1.
Thus, char R = 2 and the only subfields of characteristic 2 are Z/2Z. Now, let u ∈ R× be
arbitrary. That is, u5 = 1 and hence the subgroup generated by u has order 5:

|〈u〉| = 5

and u has 5 units. Also,
〈u〉 ∼= Z/2Z[x]/〈f(x)〉

where f(x) | x5 − 1. Since x5 − 1 is the product of distinct irreducibles, then we have the
following cases:

i. f(x) = x− 1  〈u〉 ∼= Z/2Z (1 unit)

ii. f(x) = x5−1
x−1  〈u〉 ∼= F16 (15 units)

iii. f(x) = x5 − 1  〈u〉 ∼= Z/2Z× F16 (15 units)

In all cases, |R×| = 5 does not hold. This is a contradiction.
Therefore, there does not exist a ring R ∈ Ring with group of units isomorphic to Z/5Z.
Hence, (−)× is not essentially surjective.

 since (−)× is not full/not faithful/not essentially surjective, it is not an equivalence of
categories.

4. Ring ↪→ Rng.

• Ring ↪→ Rng is not full.
In Ring, by Example 1.6.15, Z is the initial object. That is, for every R ∈ Ring, there exists a
unique ring homomorphism Z→ R. On the other hand, in Rng, there exist 2 homomorphisms
Z→ R: the trivial (zero) homomorphism and the non-trivial homomorphism from Ring. Thus,
Ring ↪→ Rng is not full (not surjective on hom-sets).

• Ring ↪→ Rng is faithful.
If ϕ = ψ ∈ Ring, then clearly ϕ = ψ as ring homomorphisms in Rng. Hence, Ring ↪→ Rng is
injective on hom-sets, so it is faithful.

• Ring ↪→ Rng is not essentially surjective.
As an arbitrary ring without unity is not isomorphic to a ring with unity, then Ring ↪→ Rng
is not essentially surjective.

 since Ring ↪→ Rng is not full/not essentially surjective, it is not an equivalence of categories.

5. Field ↪→ Ring.

• Field ↪→ Ring is fully faithful.
The inclusion is injective on objects. Also, any field homomorphism is also a ring homomor-
phism, so Field is a full subcategory of Ring. Hence, Field ↪→ Ring is fully faithful.
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• Field ↪→ Ring is not essentially surjective.
There exist rings that are not isomorphic to any field.

 since Field ↪→ Ring is not essentially surjective, it is not an equivalence of categories.

6. ModR → Ab.

Denote G : ModR → Ab.

• G is not full.
Let R be an arbitrary unital ring. Viewing R as an R-module, then an R-module homomor-
phism ϕ : R → R is uniquely determined by ϕ(1). That is, EndRR ∼= R. In general, group
homomorphisms R→ R are only uniquely determined by the image of one element when the
group is free. Hence, G is not full.

• G is faithful.
Let ϕ : M → N be an arbitrary R-module homomorphism in ModR. Then, ϕ is a group
homomorphism of abelian groups with additional structure. Hence, if ϕ 6= ψ ∈ ModR, then
Gϕ 6= Gψ in Ab. That is, ϕ 6= ψ in Ab. Hence, G is injective on hom-sets, so G is faithful.

• G is essentially surjective.
Let R be any unital ringand H ∈ Ab any abelian group. Define HR by the R-action given by

r · h = h for all r ∈ R, h ∈ H

Then, HR is an R-module and clearly G(HR) = H. Hence, G is essentially surjective.

 since G is not full (in general), it is not an equivalence of categories.
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Section 1.6. The art of the diagram chase

Exercise 1.6.ii. Show that any two terminal objects in a category are connected by a unique isomorphism.

Let C be a category and let t, t′ ∈ C be two terminal objects. Then, by definition, there exists a unique
morphism f : t→ t′ ∈ C and a unique morphism g : t′ → t ∈ C. Now, consider gf : t→ t. Since t is a
terminal object, there can only be 1 morphism t→ t. Since 1t : t→ t, then it follows that 1t = gf by
uniqueness. In the same way, since t′ is a terminal object and fg : t′ → t′, then 1t′ = fg. Since f and
g were unique and

fg = 1t′ and

gf = 1t

it follows that there exists a unique isomorphism connecting t and t′. As t, t′ were arbitrary terminal
objects, this holds for any two terminal objects in C.

Exercise 1.6.iii. Show that any faithful functor reflects monomorphisms. That is, if F : C → D is faithful, prove
that if Ff is a monomorphism in D, then f is a monomorphism in C. Argue by duality that faithful
functors also reflect epimorphisms. Conclude that in any concrete category, any morphism that defines
an injection of underlying sets is a monomorphism and any morphism that defines a surjection of
underlying sets is an epimorphism.

Let C,D be arbitrary categories and F : C→ D a faithful functor. Suppose f : x→ y ∈ C is such that
Ff : Fx→ Fy ∈ D is a monomorphism. Let h, k : w ⇒ x ∈ C be such that

fh = fk

By functoriality, then

F (fh) = F (fk)

F (f)F (h) = F (f)F (k)

As Ff is a monomorphism, then it follows that

Fh = Fk

Since F is faithful, it is injective on morphisms and hence it follows that h = k. As h, k : w ⇒ x such
that fh = fk were arbitrary, it follows that f ∈ C is a monomorphism.

Similarly, if Ff : Fx → Fy is an epimorphism, let h, k : y ⇒ z be such that hf = kf . Then, again
by functoriality F (h)F (f) = F (k)F (f) and by F being epic, Fh = Fk. By faithfulness, then h = k.
Hence, F also reflects epimorphisms.

Lastly, let C be a concrete category. By Definition 1.6.17, there exists a faithful functor U : C → Set
(the forgetful functor). By the above results, if a morphism defines an injective (monic) map of
underlying sets, it follows that it is a monomorphism in C; and if a morphism defines a surjective (epic)
map of underlying sets, then it is an epimorphism in C.

Exercise 1.6.iv. Find an example to show that a faithful functor need not preserve epimorphisms. Argue by duality, or
by another counterexample, that a faithful functor need not preserve monomorphisms.

The full embedding F : Haus ↪→ Top is fully faithful (Haus is a full subcategory) but does not preserve
epimorphisms (and hence F op : Haus ↪→ Top does not preserve monomorphisms). In the category Haus,
epimorphisms are continuous functions with dense images. If f : x → y ∈ Haus is an epimorphism,
that means that whenever gf = hf , then g = h. This implies that f(x) is dense in y. However, in Top,
epimorphisms are surjective continuous maps. Maps with dense image are not the same as surjective
maps, so faithful functors do not necessarily preserve epimorphisms or monomorphisms.
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