# Long exact sequence of homotopy groups for a fibration

Presentation notes Mohabat Tarkeshian

Presentation notes guideline:

- To be written on the board = this typeface.
- To be said out loud = this typeface.

## 1 Homotopy groups: Definitions and basic constructions

•  $I^n \subseteq \mathbb{R}^n$ 

<u>Def</u>:  $\partial I^n$ : subspace of  $I^n$  of elements with at least one coordinate equal to 0 or 1.

- The elements of the boundary are called the *faces* of the unit cube.

<u>Def</u>: If  $x_0 \in X$ , the <u>n<sup>th</sup></u> homotopy group is:

$$\pi_n(X, x_0) = \{ [f] \mid f : (I^n, \partial I^n) \to (X, x_0) \}$$

 $- \quad n = 0: I^0 = *, \, \partial I^0 = \emptyset$ 

 $\Rightarrow \quad \pi_0(X, x_0) = \{ \text{set of path components of } X \}$ 

- If  $n = 1 : I^1 = [0, 1], \partial I^1 = \{0, 1\} \Rightarrow \pi_1(X, x_0)$  is the fundamental group.

**1.0.1** Sum operation in  $\pi_n(X, x_0), n \ge 2$ .

• Generalizes the operation in  $\pi_1$ :

$$(f+g)(s_1, s_2, \dots, s_n) = \begin{cases} f(2s_1, s_2, \dots, s_n), & s_1 \in [0, \frac{1}{2}] \\ g(2s_1 - 1, s_2, \dots, s_n), & s_1 \in [\frac{1}{2}, 1] \end{cases}$$

- This is well-defined on homotopy classes.

- Since only the first coordinate is involved in the sum operation, the same arguments as for  $\pi_1$  show that  $\pi_n(X, x_0)$  is a group.
  - \* Identity: the constant map  $I^n \mapsto x_0$
  - \* <u>Inverses</u>:  $-f(s_1, s_2, \dots, s_n) = f(1 s_1, s_2, \dots, s_n).$
- $-\pi_n(X, x_0)$  is abelian for all  $n \ge 2$ .

By the definition of the operation, it suffices to show commutativity of the operation by restricting focus to just the first two coordinates  $s_1$  and  $s_2$ , and fixing all others.

$$f + g \simeq g + f$$
 via:

$$\begin{bmatrix} f & g \end{bmatrix} \simeq \begin{bmatrix} f & g \end{bmatrix} \simeq \begin{bmatrix} f \\ g \end{bmatrix} \cong \begin{bmatrix} g & f \end{bmatrix} \simeq \begin{bmatrix} g & f \end{bmatrix}$$

- (1) Shrink the domains of f and g to smaller subcubes (where the region outside the subcubes are mapped to the basepoint).
- (2) Slide the subcubes around anywhere in  $I^n$  as long as they stay disjoint (can be done for  $n \ge 2$  since both coordinates can be shifted).
- (3) Enlarge the domains to original size.

#### 1.1 Relative homotopy groups

- Let  $A \subseteq X$ ,  $x_0 \in A$ .
- Denote

$$I^{n-1} = \{ (x_1, x_2, \dots, x_{n-1}, 0) \mid x_i \in I \}$$

• Define

$$J^{n-1} := \overline{(\partial I^n - I^{n-1})}$$

i.e.,  $J^{n-1}$  is the closure of the union of the remaining faces of  $I^n$ .

<u>Def</u>:  $n^{th}$  relative homotopy group of (X, A) at basepoint  $x_0$  is

$$\pi_n(X, A, x_0) = \{ [f] \mid f : (I^n, \partial I^n, J^{n-1}) \to (X, A, x_0) \}$$

where  $f: I^n \to X$  is such that:

$$f(\partial I^n) \subseteq A,$$
$$f(J^{n-1}) = \{x_0\}$$

<u>Remark</u>:  $\pi_n(X, x_0, x_0) = \pi_n(X, x_0)$ 

 i.e, Absolute homotopy groups are a special case of relative homotopy groups (analogous to absolute vs relative homology groups).

### **1.1.1** Sum operation in $\pi_n(X, A, x_0), n \ge 2$ .

- Since s<sub>n</sub> is "no longer available", the sum operation in π<sub>n</sub>(X, A, x<sub>0</sub>) is not abelian for n = 2 (the operation allows "movement" in every direction except the direction of s<sub>n</sub>).
- $\pi_1(X, A, x_0)$  is not a group.
  - $I^1 = [0, 1], I^0 = \{0\}, J^0 = \{1\}.$  $\Rightarrow \pi_1(X, A, x_0) = \text{set of homotopy classes of paths in } X \text{ from a varying point in } A \text{ to a fixed basepoint } x_0 \in A$
  - In general, this is not a group in any natural way.
- $\pi_n(X, A, x_0)$  is an abelian group for all  $n \ge 3$ .

## 2 Long exact sequence of relative homotopy groups

The most useful feature of relative homotopy groups is the fact that they form an exact sequence of groups.

**Theorem 4.3**. The sequence given by

$$\cdots \longrightarrow \pi_n(A, x_0) \xrightarrow{\iota_*} \pi_n(X, x_0) \xrightarrow{j_*} \pi_n(X, A, x_0)$$

$$\xrightarrow{\delta} \pi_{n-1}(A, x_0) \xrightarrow{\iota_*} \pi_{n-1}(X, x_0) \longrightarrow \cdots$$

$$\cdots \longrightarrow \pi_0(X, x_0)$$

is an exact sequence.

 $\iota: (A, x_0) \hookrightarrow (X, x_0), j: (X, x_0, x_0) \hookrightarrow (X, A, x_0) \text{ are inclusion maps and } \iota_*([f]) = [\iota f], j_*([f]) = [jf].$ 

 $\delta: \pi_n(X, A, x_0) \to \pi_{n-1}(A, x_0)$  is the boundary map that takes  $f: (I^n, \partial I^n, J^{n-1}) \to (X, A, x_0)$  and restricts it to  $I^{n-1}$ , i.e.,

$$\delta([f]) = [f|_{I^{n-1}}]$$

Proof.

Before we begin to show some of the six inclusions, the following will be a useful criterion to identify trivial elements of the relative homotopy group.

Compression Criterion:

A map 
$$f: (I^n, \partial I^n, J^{n-1}) \to (X, A, x_0)$$
 is 0 in  $\pi_n(X, A, x_0)$  if and only if  $f \simeq g$   
relative to  $\partial I^n$ , where g has image contained in A.

-  $\underline{f \simeq g}$  relative to  $\partial I^n$ : there exists a homotopy  $f_t$  such that  $f \simeq g$ , where  $f_t|_{\partial I^n}$  is independent of t

- This is analogous to the definition of a deformation retract, where a homotopy  $f_t: X \to Y$  is such that  $f_t|_A$  is the identity map.

– Showing this criterion is easier done by looking at maps from  $D^n$  rather than the unit cube.

(1)  $\operatorname{im}_{\iota_*} \subseteq \ker j_*$ .  $j_*\iota_*([f]) = 0$  for every  $f \in \pi_n(A, x_0)$  since if

$$f: (I^n, \partial I^n, J^{n-1}) \to (A, x_0)$$

 $\Rightarrow f = 0$  in  $\pi_n(X, A, x_0)$  by the compression cirterion. i.e.,  $f \simeq f$  and  $f(I^n) \subseteq A$ .

(2) ker  $j_* \subseteq \operatorname{im} \iota_*$ .

By the compression criterion, [f] = 0 in  $\pi_n(X, A, x_0)$  implies that  $f \simeq g$  relative to  $\partial I^n$  with  $g(I^n) \subseteq A$ .

$$\Rightarrow \quad \iota_*([g]) = [f]$$

Hence,  $[f] \in \operatorname{im} \iota_* \Rightarrow \ker j_* \subseteq \operatorname{im} \iota_*$ .  $\therefore \ker j_* = \operatorname{im} \iota_*$ .

(3)  $\operatorname{im} j_* \subseteq \ker \delta$ .

If  $[f] \in \pi_n(X, A, x_0) \in \operatorname{im} j_*$ , then

 $f|_{I^{n-1}}$  is constant since  $f|_{I^{n-1}} = x_0$ 

 $\Rightarrow \delta([f]) = \text{constant}$ 

 $\Rightarrow \quad \operatorname{im} j_* \subseteq \ker \delta.$ 

(4)  $\ker \delta \subseteq \operatorname{im} j_*$ .

If  $\delta([f]) = 0$  where  $f : (I^n, \partial I^n, J^{n-1}) \to (X, A, x_0),$  $\Rightarrow \quad f|_{I^{n-1}} \simeq \text{ constant} \in \pi_{n-1}(A, x_0)$ 

Then,  $f|_{I^{n-1}} \simeq g$  with  $g(I^{n-1}) = \{x_0\}$  via a homotopy

$$F: I^{n-1} \times I \to A$$

We can tack F onto f to get a map

Considering h as a map  $h: (I^n, \partial I^n, J^{n-1}) \longrightarrow (X, A, x_0),$ 

 $h \simeq f$ 

via homotopy that tacks on increasingly longer segments of F.

$$\Rightarrow \quad [f] = j_*([h])$$

 $\Rightarrow \quad \ker \delta \subseteq \operatorname{im} j_*.$  $\therefore \operatorname{im} j_* = \ker \delta$ 

## 3 Fibrations

- The motivation behind fiber bundles is that it is a type of map that gives a long exact sequence of homotopy groups.
  - Its distinguishing feature is that all of its fibers are homeomorphic.
  - They arise in all sorts of geometry such as tangent bundles.
  - They are a generalization of covering spaces where fibers do not have to be discrete, but they don't have the unique lifting property.

Homotopy lifting property wrt X: A map  $p: E \to B$  has this property iff  $\forall$  homotopies  $g_t: X \to B$  and  $\tilde{g}_0: X \to E$  lifting  $g_0$ , then  $\exists$  a homotopy  $\tilde{g}_t: X \to E$  lifting  $g_t$ :



 $p: E \to B$  is called a <u>fibration</u> if it has this property wrt all spaces X.

• Every fiber bundle is a fibration and every covering space is a fibration

**Theorem 4.41**. Suppose  $p: E \to B$  is a fibration. If  $b_0 \in B, x_0 \in F = p^{-1}(b_0)$ . Then,

$$p_*: \pi_n(E, F, x_0) \to \pi_n(B, b_0)$$
 is an isomorphism

Hence, if B is path-connected,  $\exists$  a LES:



Example: Hopf Fibration

Let  $E = S^3, B = S^2, F = S^1$ .

Define  $p: S^3 \to S^2$  by

$$p: (z_1, z_2) \mapsto (2z_1\overline{z_2}, |z_1|^2 - |z_2|^2)$$

where

$$S^{3} = \{(z_{1}, z_{2}) \in \mathbb{C}^{2} \mid |z_{1}|^{2} + |z_{2}|^{2} = 1\}$$

and

$$S^{2} = \{(z, x) \in \mathbb{C} \times \mathbb{R} \mid |z|^{2} + x^{2} = 1\}$$

This map p is a fiber bundle (all fibers are homeomorphic –  $S^1$ ) and hence a fibration.

By Theorem 4.41, this is exact:

$$\pi_2(S^3) \to \pi_2(S^2) \to \pi_1(S^1) \to \pi_1(S^3)$$

<u>Fact</u>:  $\pi_i(S^3) = 0$  for i = 1, 2 and  $\pi_i(S^1) = 0$  for all  $i \ge 2$ .

 $\Rightarrow 0 \to \pi_2(S^2) \to \mathbb{Z} \to 0$  is an exact sequence

$$\Rightarrow \quad \pi_2(S^2) \cong \pi_1(S^1) \cong \mathbb{Z}$$

Also, this sequence is exact:

$$\pi_3(S^1) \to \pi_3(S^3) \to \pi_3(S^2) \to \pi_2(S^1)$$
$$\Rightarrow \quad 0 \to \pi_3(S^3) \xrightarrow{\cong} \pi_3(S^2) \to 0$$

<u>Fact</u>:  $\pi_3(S^3) \cong \mathbb{Z}$ 

$$\Rightarrow \pi_3(S^2) \cong \mathbb{Z}$$

This is not analogous to homology where higher dimensional homology groups were trivial (i.e.,  $H_n(S^k) = 0$  for all n > k).