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1. basic definitions and results

Let K ⊆ L ⊆ C be subfields.

Definition 1.1. Let ΩL = Hom(L,C) be the set of embeddings of L into C. Denote the
embeddings of L that restrict to the inclusion map on K by ΩL/K :

ΩL/K := {ϕ ∈ ΩL | ϕ|K = ιK}

Define the set of normal embeddings Ων
L/K as the embeddings in ΩL/K such that their image

is contained in L, i.e.,

Ων
L/K := {ϕ ∈ ΩL/K | ϕ(L) ⊆ L}

L ⊆ K is said to be a Galois extension if and only if Ων
L/K = ΩL/K .

Let f ∈ K[x] be a monic polynomial. Denote the set of zeros of f as Zf ⊆ C.

Definition 1.2. K(Zf ) is called the splitting field of f over K.

– L/K splits f if and only if Zf ⊆ L.

Let α1, α2, . . . , αm ∈ K and L = K(α1, α2, . . . , αm) ⊆ K. Let παi
∈ K[x] denote the minimal

polynomial for each αi.

Proposition 1.3. The following are equivalent.

1. L/K is a Galois extension;

2. L/K splits πα1 , . . . , παm;

3. L/K is the splitting field of some polynomial f ∈ K[x];

4. L/K splits πα for every α ∈ L.
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Definition 1.4. The set of automorphisms of L that fix K is denoted as

AutK(L) := {ϕ : L
∼=→ L | ϕ|K = idK}

Given a Galois extension L/K, the Galois group of L/K is this set of automorphisms.

Gal(L/K) := AutK(L)

Theorem 1. Fundamental theorem of Galois theory.

Let M/K be a Galois extension and G = Gal(M/K). There exists a bijection:

{subfields L of M containing K} ↔ {subgroups H of G}
given by:

L 7→ {elements of G fixing L} = stabG(L)

{fixed field of H} ←[ H ≤ G

Definition 1.5. The fixed field of a subgroup H ≤ G of a Galois group is the set of all x ∈M
that are fixed by all elements of the subgroup H, i.e.,

MH = {x ∈M | σ(x) = x for all σ ∈ H}

Definition 1.6. The Galois group of a monic polynomial f ∈ K[x] is the Galois group of the
splitting field of f over K:

Gal(f) := Gal(K(Zf )/K)

Theorem 2. f(x) ∈ K[x] is irreducible if and only if Gal(f) ≤ Sn is a transitive subgroup.

That is, the Galois group of a monic polynomial acts transitively on the roots.
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2. discriminants and galois groups of cubics

Let K ⊆ C be a subfield as before. Let f(x) ∈ K[x] be a monic polynomial.

Definition 2.1. The discriminant δ of x1, x2, . . . , xn is defined by

δ =
∏
i<j

(xi − xj)2

– The discriminant of a polynomial, denoted disc f , is the discriminant of the roots of
the polynomial.

Claim 2.2. A permutation σ ∈ Sn is an element of the alternating group An if and only if
σ fixes the product: √

δ =
∏
i<j

(xi − xj) ∈ Z[x1, x2, . . . , xn]

Then,
√
δ generates the fixed field of An and generates a quadratic extension of K, leading

to the following proposition.

Proposition 2.3. The permutation σ ∈ Sn is an element of An if and only if σ(
√
δ) =

√
δ.

Corollary 2.4. The Galois group of f(x) over K is a subgroup of An if and only if disc f
is a square in K.

Remark 2.5. The disriminant is symmetric in the roots of a polynomial f(x) ∈ K[x], hence
it is fixed by all the elements of the Galois group of f(x).

– Since
√
δ =

∏
i<j(αi−αj), then

√
δ is always an element of the splitting field of f(x).

Theorem 3. Let f(x) ∈ K[x] be an irreducible cubic polynomial. Then,

Gal(f) =

{
A3 if disc f = � in K

S3 if disc f 6= � in K

Proof.

The Galois group of the splitting field of f(x) over K is a transitive subgroup of S3 by
Theorem 2.

S3 only has two transitive subgroups: the alternating group A3 and the group iteself S3. By
Corollary 2.4, the result follows. �
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3. Galois resolvents

• If a cubic polynomial is irreducible, its Galois group is easily determined by the
characterization given in Theorem 3.

– Whether or not disc f is a square in K is the same as determining whether the
quadratic polynomial (x2 − disc f) has a root in K.

– That is, the Galois group of a cubic depends on a quadratic polynomial.

• In an analogous way, if a quartic polynomial is irreducible, an associated cubic poly-
nomial aids in the determination of its Galois group. This is called its cubic (or
Galois) resolvent.

3.1. General definition.

Definition 3.1. Let x1, x2, . . . , xn be indeterminates. The elementary simple functions y1, y2, . . . , yn
are defined by:

y1 = x1 + x2 + · · ·+ xn

y2 = x1x2 + x1x3 + · · ·+ x2x3 + · · ·+ xn−1xn
...

yn = x1x2 · · ·xn
– That is, the elementary simple function yi in the indeterminates x1, x2, . . . xn is the

sum of all products of distinct x′js taken i at a time.

Let Q(x) = Q(x1, x2, . . . , xn) be the field of rational functions in n indeterminates. Then,
Sn acts faithfully on Q(x) by permuting the indeterminates. That is, for all s 6= (1) ∈ Sn,
there exists f(x) ∈ Q(x) such that sf(x) 6= f(x).

– The stabilizer of this action is the subfield of rational functions

Q(y) = Q(y1, y2, . . . , yn)

where yi is the ith elementary simple function in x1, x2, . . . , xn. For any simple function,
permuting the indeterminates does not change the function.

– By the fundamental theorem of Galois theory (Theorem 1), then

Sn ≡ Gal(Q(x)/Q(y)).

By the fundamental theorem of Galois theory, for every subgroup H ≤ Sn, there is a corre-
sponding fixed field of H, denoted Q(x)H , consisting of every f ∈ Q(x) that is fixed by the
subgroup H.

– Since [Q(x)H : Q(y)] <∞,

Q(x)H = Q(y, F (x))

where F (x) = F (x1, x2, . . . , xn) ∈ Q(x) is some rational function. Take F to be a polynomial
in x1, x2, . . . , xn.
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Definition 3.2. The minimal polynomial for F (x) over Q(y) is denoted Φ(z,y) and it is
called the (general) Galois resolvent of H corresponding to F (x).

The roots of Φ(z,y) are the conjugates of F (x) over Sn. Hence, over Q(y),

Φ(z,y) =
∏
h∈S

(z − hF (x))

where S is the set of coset representatives of Sn/H, and

hF (x) = F (hx)

where hx = (xh1, xh2, . . . , xhn) (i.e., applying the permutation to the indeterminates).

Claim 3.3. The coefficients of Φ(z,y) are polynomials in the elementary simple functions
y1, y2, . . . , yn.

The general Galois resolvent can be specialized to the case of a given polynomial f(x) ∈ Q[x].
Suppose f is monic such that

f(x) = xn + a1x
n−1 + · · ·+ an ∈ Q[x]

and f has distinct roots α1, α2, . . . , αn.

Definition 3.4. In definition 3.2, substitute a = (−a1, a2, . . . , (−1)nan) for y and α =
(α1, α2, . . . , αn) for x to obtain the following specialized Galois resolvent for a polynomial
f(x) ∈ Q[x]:

Φ(z,a) =
∏
h∈S

(z − hF (α))

– The coefficients of Φ(z,a) are rational numbers.

3.2. The Galois resolvent of a quartic.

Let f(x) ∈ K[x] be an irreducible monic quartic polynomial such that

f(x) = x4 + ax3 + bx2 + cx+ d

Definition 3.5. The resolvent cubic polynomial of f , denoted R3(x), is

R3(x) = x3 − bx2 + (ac− 4d)x− (a2d+ c2 − 4bd)

Remark 3.6. The derivation of this formula involves looking at the roots of the quartic
f(x) = (x− r1)(x− r2)(x− r3)(x− r4). R3(x) is then created with roots in the splitting field
K(Zf ). An expression in the roots of f(x) which only has three possible images under the
Galois group leads to the polynomial:

R3(x) = (x− (r1r2 + r3r4))(x− (r1r3 + r2r4))(x− (r1r4 + r2r3))

Then, determining the coefficients of R3(x) in terms of the coefficients of f involves multi-
plying and factoring the above expression.
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4. the Galois group of a quartic polynomial

Let f(x) ∈ K[x] be an irreducible quartic monic polynomial.

As f is irreducible, the Galois group of f is transitive on the roots of f by Theorem 2 (it
is possible to get from one root to any other root by applying some element of the Galois
group).

The only transitive subgroups of S4 are as follows:

(i) S4

(ii) Alternating group (order 12): A4

(iii) Klein-4 group: V = {1, (12)(34), (13)(24), (14)(23)} ∼= Z/2Z× Z/2Z
• The Klein-4 group is a normal subgroup of S4.

(iv) Cyclic group of order 4: C4 = {1, (1234), (13)(24), (1432)} ∼= Z/4Z and its conjugates:
• {1, (1324), (12)(34), (1423)} and

• {1, (1243), (14)(23), (1342)}.

(v) Dihedral group of order 8: D8 = {1, (1324), (12)(34), (1423), (13)(24), (14)(23), (12), (34)}
and its conjugates:
• {1, (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)}; and

• {1, (1243), (14)(23), (1342), (12)(34), (13)(24), (14), (23)}.

Note: The types of cycles determine the conjugacy classes.

Theorem 4. The following table characterizes the Galois group of an irreducible quartic
polynomial in terms of its discriminant and resolvent cubic polynomial.

disc f ∈ K R3(x) ∈ K[x] Gal(f)

not � in K irreducible in K[x] S4

� in K irreducible in K[x] A4

not � in K reducible in K[x] D8 or C4

� in K reducible in K[x] V

Table 1.
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Proof.

Row 1:

If disc f is not a � in K and R3(x) is irreducible over K, then Gal(f) 6≤ A4 by Corollary
2.4.

Now, 3 | |Gal(f)| since R3(x) is irreducible over K and hence adding a root of R3(x) to K
results in a cubic extension of K in K(Zf ). Since the splitting field K(Zf ) also contains
K(r1) for a root r1 of f , then |Gal(f)| is also divisible by 4. The only subgroups of S4 with
order divisible by 12 are S4 and A4. Since Gal(f) 6= A4, then Gal(f) = S4.

Row 2:

Suppose disc f is a � in K and R3(x) is irreducible over K. Since disc f = �, then by
Corollary 2.4, Gal(f) ≤ A4. In the same way as row 1, 3 and 4 divide |Gal(f)|. Hence, since
Gal(f) ≤ A4 and 12 | |Gal(f)|, then Gal(f) = A4.

Row 3:

If disc f is not a � in K and R3(x) is reducible over K, then Gal(f) 6≤ A4 since disc f 6= �
by Corollary 2.4. Hence,

Gal(f) = S4, D8, or C4

Claim 4.1. If Gal(f) has a 3-cycle, then R3(x) is irreducible.

Proof of claim: Suppose Gal(f) has a 3-cycle. Then, applying this 3-cycle to a root of the
resolvent R3(x) yields all the distinct roots of R3(x) in a single orbit of Gal(f). This implies
that R3(x) is irreducible over K. �

In this row, R3(x) is reducible over K, hence by the claim it follows that Gal(f) has no
3-cycles. Since S4 has 3-cycles, it follows that

Gal(f) = D8 or C4

Row 4:

Supose disc f is a square in K and R3(x) is reducible over K. Again, since disc f = �, then
by Corollary 2.4, Gal(f) ≤ A4. Hence,

Gal(f) = A4 or V

Since in this row, R3(x) is reducible, by claim 4.1, it follows that Gal(f) has no 3-cycles.
Since A4 has 3-cycles and V does not, then it follows that Gal(f) = V .

�
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4.1. Distinguishing between C4 and D8.

– Theorem 4 gives a useful charactierization of Galois groups of irreducible quartics.
However, there is some ambiguity when disc f 6= � and R3(x) is reducible. There is a
further characterization that can be used to distinguish between these two subgroups.

Theorem 5. Let f(x) ∈ Q[x] be an irreducible quartic. If Gal(f) = C4, then disc f > 0.

Therefore, if Gal(f) is D8 or C4 and disc f < 0⇒ Gal(f) = D8.

Proof.

Suppose Gal(f) = C4. Since the splitting field of f(x) over Q has degree 4, any root of
f(x) generates an extension of Q with degree 4. Thus, the field generated by one root of f
contains all other roots as well. If f(x) has 1 real root, then it has 4 real roots. Hence, the
number of real roots of f(x) is either 0 or 4.

If f(x) has 4 real roots, then disc f is the product of differences of nonzero real numbers,
hence disc f > 0.

On the other hand, if f(x) has 0 real roots, then it has 4 complex roots that are two pairs
of complex conjugates. Let z, z̄, w, w̄ ∈ C \ R be the roots. By definition, then

√
disc f is

given by √
disc f = (z − z̄)(z − w)(z − w̄)(z̄ − w)(z̄ − w̄)(w − w̄)

⇒
√

disc f = |z − w|2|z − w̄|2(z − z̄)(w − w̄)

Since z ∈ C \R, then z− z̄ = qi ∈ C is imaginary and nonzero. In the same way, w− w̄ = ri
is imaginary and nonzero. Thus,

disc f = |z − w|4|z − w̄|4(qi)2(ri)2 = |z − w|4|z − w̄|4q2r2 > 0

Thus, disc f > 0 in both cases. �

– To fully distinguish between C4 and D8, the following lemma will be used to show
that in this case, the resolvent R3(x) has a unique root.

Lemma 4.2. If f ∈ K[x] is a cubic polynomial with discriminant δ, and r is a root of f ,

then a splitting field of f over K is K(Zf ) = K(r,
√
δ).

Proof. WLOG, suppose f is monic. Let r, r2, r3 be the roots of f . Write

f(x) = (x− r)g(x)

so r2, r3 are the roots of g(x). Hence, g(r) 6= 0. Using the quadratic formula for g(x) over
K(r), then

K(r, r2, r3) = K(r)(r2, r3) = K(r)(
√

disc g)

Since f is monic, then so is g and hence

disc f = g(r)2 disc g
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⇒ K(r,
√

disc g) = K(r,
√

disc f)

That is, K(Zf ) = K(r,
√
δ) for a cubic polynomial f with discriminant δ and root r ∈ K. �

– Lemma 4.2 tells us that if δ = disc f 6= � in K and R3(x) is reducible over K, then
R3(x) has a root in K but does not split completely over K (since disc f 6= �). Hence, R3(x)
has a unique root r in K.

Theorem 6. (Kappe-Warren)

Let f ∈ K[x] be an irreducible quartic where δ 6= � in K and R3(x) ∈ K[x] is reducible with
a unique root r ∈ K. Then, if both polynomials x2 + ax+ (b− r) and x2 − rx+ d split over

K(
√
δ), then Gal(f) = C4. Otherwise, Gal(f) = D8.

– Kappe-Warren is a powerful tool in distinguishing between Galois groups C4 and D8.
Using this theorem, Table 1 can be completed into a full characterization as follows.

Corollary 4.3. If f(x) = x4 +ax3 + bx2 + cx+d ∈ K[x] is an irreducible quartic polynomial
with disc f = δ and R3(x) its resolvent cubic, then the following characterization holds.

δ ∈ K R3(x) ∈ K[x] (a2 − 4(b− r))δ and (r2 − 4d)δ Gal(f)

not � in K irreducible in K[x] S4

� in K irreducible in K[x] A4

not � in K root r ∈ K at least one is not � in K D8

not � in K root r ∈ K both are � in K C4

� in K reducible in K[x] V

Table 2.

Proof.

Referring to Kappe-Warren (6), the polynomials g = x2 + ax+ (b− r) and h = x2 − rx+ d

split completely over K(
√
δ) if and only if their discriminants disc g = a2 − 4(b − r) and

disch = r2 − 4d are squares in K(
√
δ).

Claim 4.4. The discriminants disc g = a2 − 4(b − r) and disch = r2 − 4d are either 0 or
nonsquares in K.
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Now, a nonsquare in K is a square in K(
√
δ) if and only if its product with δ is a square.

Hence, the desired polynomials g and h both split completely over K(
√
δ) if and only if

δ ·disc g and δ ·disch are both square in K. That is, if both δ ·disc g and δ ·disch are squares
in K, then Gal(f) = C4, and otherwise the Galois group is D8. �

Warning : The above characterizations of Galois groups of quartic polynomials rely on
the fact that f must be irreducible over K. These results do not hold for reducible quartic
polynomials.
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5. Some example computations

This final section determines the Galois groups of irreducible quartic polynomials using the
aforementioned results.

(1) The Galois groups of f(x) = x4 + px+ p ∈ Q[x] for all primes p > 2.

First, by Eisenstein’s criterion, for any prime p, f(x) = x4 + px + p is irreducible
over Q.

For arbitrary p, the discriminant and cubic resolvent of f is as follows.

δ = 256p3 − 27p4 = p3(256− 27p) 6= �

R3(x) = x3 − 4px− p2

Since δ 6= � for arbitrary p, it remains to analyze the resolvent for varying primes
p.

Suppose p > 5. If R3(x) were reducible, then it would have a root dividing p2, i.e.,
±1,, ±p or ±p2.

R3(1) = 1− 4p− p2 < 0 6= 0

R3(−1) = −1 + 4p− p2 = −1 + p(4− p) < 0 since (4− p) < 0

R3(p) = p3 − 4p2 − p2 = p3 − 5p2 = p2(p− 5) > 0 since p > 5

R3(−p) = −p3 + 4p2 − p2 = −p3 + 5p2 = p2(5− p) < 0 since p > 5

R3(p
2) = p6 − 4p3 − p2 = p2(p4 − 4p− 1) > 0

R3(−p2) = −p6 + 4p3 − p2 = p2(−p4 + 4p− 1) < 0

Hence, R3(x) is irreducible when p > 5. By Theorem 4, then Gal(x4 + px+ p) = S4

for all primes p > 5.

Now, suppose p = 3. Then, f(x) = x4 + 3x+ 3 and δ = 4725. The cubic resolvent
is as follows.

R3(x) = x3 − 12x− 9

Then, R3(x) is reducible since R3(−3) = 0, and thus R3(x) has a root, r = −3. Then,
Gal(x4 + 3x+ 3) = D8 or C4 by Theorem 4.

To distinguish between D8 and C4, by Corollary 4.3, it remains to compute (a2 −
4(b− r))δ and (r2 − 4d)δ.

(a2 − 4(b− r))δ = −4(3)(4725) = −56700 6= �

Since this is non-square in K, then Gal(x4 + 3x+ 3) = D8 by Corollary 4.3.

Lastly, suppose p = 5. Then, f(x) = x4 +5x+5 and δ = 15125. Its cubic resolvent
is

R3(x) = x3 − 20x− 25

Since R3(5) = 0, then R3(x) is reducible with root r = 5. By Theorem 4, then
Gal(x4 + 5x+ 5) = D8 or C4. By Corollary 4.3, it remains to determine whether the
following values are squares in K.
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(a2 − 4(b− r))δ = −4(−5)(15125) = 302500 = (550)2 = �

(r2 − 4d)δ = (25− 4(5))(15125) = 75625 = (275)2 = �

As both above values are squares in Q, then by Corollary 4.3, Gal(x4+5x+5) = C4.

(2) f(x) = x4 − 7

First, to use any of the results in the previous sections, it must be verified that
f(x) ∈ Q[x] is indeed irreducible. By applying Eisenstein’s criterion with p = 7, then
f is irreducible over Z, which implies that f is irreducible over Q (since f is monic).

It remains to compute the discriminant and cubic resolvent of f .

δ = 256d3 = 256(−7)3 = −87808 6= �

R3(x) = x3 + 28x = x(x2 + 28) = reducible over Q
Hence, by Theorem 4, Gal(f) = D8 or C4. By Theorem 5, since δ < 0, then Gal(f) =
D8.

(3) f(x) = x4 + x+ 1

In F2[x],
f(x)− (x4 − x) ≡ 1 mod 2

Then, f(x) is relatively prime to every irreducible polynomial over F2 that has degree
dividing 2. Hence, f(x) cannot be factored over F2. Thus, f is irreducible over Q
(by Proposition 9.12 in Dummit and Foote).

The discriminant and resovlent of f are as follows.

δ = 256d3 − 27c4 = 256− 27 = 229 6= �

R3(x) = x3 − 4dx− c2 = x3 − 4x− 1 = irreducible over Q
Note that R3(x) is irreducible since if it were reducible, it would have to have a root
dividing 1 (i.e., ±1), but R3(±1) 6= 0.

By Theorem 4, then Gal(f) = S4.
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