GALOIS THEORY AND QUARTIC POLYNOMIALS

MOHABAT TARKESHIAN

Winter Term 2018

1. BASIC DEFINITIONS AND RESULTS

Let $K \subseteq L \subseteq \mathbb{C}$ be subfields.

Definition 1.1. Let $\Omega_L = \text{Hom}(L, \mathbb{C})$ be the set of embeddings of L into \mathbb{C} . Denote the embeddings of L that restrict to the inclusion map on K by $\Omega_{L/K}$:

$$\Omega_{L/K} := \{ \varphi \in \Omega_L \mid \varphi|_K = \iota_K \}$$

Define the set of normal embeddings $\Omega^{\nu}_{L/K}$ as the embeddings in $\Omega_{L/K}$ such that their image is contained in L, i.e.,

$$\Omega_{L/K}^{\nu} := \{ \varphi \in \Omega_{L/K} \mid \varphi(L) \subseteq L \}$$

 $L \subseteq \overline{K}$ is said to be a *Galois extension* if and only if $\Omega_{L/K}^{\nu} = \Omega_{L/K}$.

Let $f \in K[x]$ be a monic polynomial. Denote the set of zeros of f as $Z_f \subseteq \mathbb{C}$.

Definition 1.2. $K(Z_f)$ is called the splitting field of f over K.

- L/K splits f if and only if $Z_f \subseteq L$.

Let $\alpha_1, \alpha_2, \ldots, \alpha_m \in \overline{K}$ and $L = K(\alpha_1, \alpha_2, \ldots, \alpha_m) \subseteq \overline{K}$. Let $\pi_{\alpha_i} \in K[x]$ denote the minimal polynomial for each α_i .

Proposition 1.3. The following are equivalent.

- 1. L/K is a Galois extension;
- 2. L/K splits $\pi_{\alpha_1}, \ldots, \pi_{\alpha_m}$;
- 3. L/K is the splitting field of some polynomial $f \in K[x]$;
- 4. L/K splits π_{α} for every $\alpha \in L$.

Definition 1.4. The set of automorphisms of L that fix K is denoted as

$$\operatorname{Aut}_{K}(L) := \{ \varphi : L \xrightarrow{\cong} L \mid \varphi|_{K} = \operatorname{id}_{K} \}$$

Given a Galois extension L/K, the Galois group of L/K is this set of automorphisms. $\operatorname{Gal}(L/K) := \operatorname{Aut}_K(L)$

Theorem 1. Fundamental theorem of Galois theory.

Let M/K be a Galois extension and $G = \operatorname{Gal}(M/K)$. There exists a bijection: {subfields L of M containing K} \leftrightarrow {subgroups H of G}

given by:

 $L \mapsto \{elements \text{ of } G \text{ fixing } L\} = \operatorname{stab}_G(L)$ $\{fixed \text{ field of } H\} \leftrightarrow H \leq G$

Definition 1.5. The fixed field of a subgroup $H \leq G$ of a Galois group is the set of all $x \in M$ that are fixed by all elements of the subgroup H, i.e.,

$$M^{H} = \{ x \in M \mid \sigma(x) = x \text{ for all } \sigma \in H \}$$

Definition 1.6. The Galois group of a monic polynomial $f \in K[x]$ is the Galois group of the splitting field of f over K:

$$\operatorname{Gal}(f) := \operatorname{Gal}(K(Z_f)/K)$$

Theorem 2. $f(x) \in K[x]$ is irreducible if and only if $Gal(f) \leq S_n$ is a transitive subgroup.

That is, the Galois group of a monic polynomial acts transitively on the roots.

2. DISCRIMINANTS AND GALOIS GROUPS OF CUBICS

Let $K \subseteq \mathbb{C}$ be a subfield as before. Let $f(x) \in K[x]$ be a monic polynomial. Definition 2.1. The discriminant δ of x_1, x_2, \ldots, x_n is defined by

$$\delta = \prod_{i < j} (x_i - x_j)^2$$

– The discriminant of a polynomial, denoted disc f, is the discriminant of the roots of the polynomial.

Claim 2.2. A permutation $\sigma \in S_n$ is an element of the alternating group A_n if and only if σ fixes the product:

$$\sqrt{\delta} = \prod_{i < j} (x_i - x_j) \in \mathbb{Z}[x_1, x_2, \dots, x_n]$$

Then, $\sqrt{\delta}$ generates the fixed field of A_n and generates a quadratic extension of K, leading to the following proposition.

Proposition 2.3. The permutation $\sigma \in S_n$ is an element of A_n if and only if $\sigma(\sqrt{\delta}) = \sqrt{\delta}$.

Corollary 2.4. The Galois group of f(x) over K is a subgroup of A_n if and only if disc f is a square in K.

Remark 2.5. The disriminant is symmetric in the roots of a polynomial $f(x) \in K[x]$, hence it is fixed by all the elements of the Galois group of f(x).

- Since $\sqrt{\delta} = \prod_{i < j} (\alpha_i - \alpha_j)$, then $\sqrt{\delta}$ is always an element of the splitting field of f(x).

Theorem 3. Let $f(x) \in K[x]$ be an irreducible cubic polynomial. Then,

$$\operatorname{Gal}(f) = \begin{cases} A_3 & \text{if disc } f = \Box \text{ in } K \\ S_3 & \text{if disc } f \neq \Box \text{ in } K \end{cases}$$

Proof.

The Galois group of the splitting field of f(x) over K is a transitive subgroup of S_3 by Theorem 2.

 S_3 only has two transitive subgroups: the alternating group A_3 and the group iteself S_3 . By Corollary 2.4, the result follows.

3. Galois resolvents

- If a cubic polynomial is irreducible, its Galois group is easily determined by the characterization given in Theorem 3.
 - Whether or not disc f is a square in K is the same as determining whether the quadratic polynomial $(x^2 \text{disc } f)$ has a root in K.
 - That is, the Galois group of a cubic depends on a quadratic polynomial.
- In an analogous way, if a quartic polynomial is irreducible, an associated cubic polynomial aids in the determination of its Galois group. This is called its cubic (or Galois) resolvent.

3.1. General definition.

Definition 3.1. Let x_1, x_2, \ldots, x_n be indeterminates. The elementary simple functions y_1, y_2, \ldots, y_n are defined by:

$$y_{1} = x_{1} + x_{2} + \dots + x_{n}$$

$$y_{2} = x_{1}x_{2} + x_{1}x_{3} + \dots + x_{2}x_{3} + \dots + x_{n-1}x_{n}$$

$$\vdots$$

$$y_{n} = x_{1}x_{2} \cdots x_{n}$$

- That is, the elementary simple function y_i in the indeterminates $x_1, x_2, \ldots x_n$ is the sum of all products of distinct $x'_i s$ taken *i* at a time.

Let $\mathbb{Q}(\boldsymbol{x}) = \mathbb{Q}(x_1, x_2, \dots, x_n)$ be the field of *rational* functions in *n* indeterminates. Then, S_n acts faithfully on $\mathbb{Q}(\boldsymbol{x})$ by permuting the indeterminates. That is, for all $s \neq (1) \in S_n$, there exists $f(\boldsymbol{x}) \in \mathbb{Q}(\boldsymbol{x})$ such that $sf(\boldsymbol{x}) \neq f(\boldsymbol{x})$.

- The stabilizer of this action is the subfield of rational functions

$$\mathbb{Q}(\boldsymbol{y}) = \mathbb{Q}(y_1, y_2, \dots, y_n)$$

where y_i is the *i*th elementary simple function in x_1, x_2, \ldots, x_n . For any simple function, permuting the indeterminates does not change the function.

– By the fundamental theorem of Galois theory (Theorem 1), then

$$S_n \equiv \operatorname{Gal}(\mathbb{Q}(\boldsymbol{x})/\mathbb{Q}(\boldsymbol{y}))$$

By the fundamental theorem of Galois theory, for every subgroup $H \leq S_n$, there is a corresponding fixed field of H, denoted $\mathbb{Q}(\boldsymbol{x})^H$, consisting of every $f \in \mathbb{Q}(\boldsymbol{x})$ that is fixed by the subgroup H.

- Since
$$[\mathbb{Q}(\boldsymbol{x})^H : \mathbb{Q}(\boldsymbol{y})] < \infty$$
,

$$\mathbb{Q}(\boldsymbol{x})^H = \mathbb{Q}(\boldsymbol{y}, F(\boldsymbol{x}))$$

where $F(\boldsymbol{x}) = F(x_1, x_2, \dots, x_n) \in \mathbb{Q}(\boldsymbol{x})$ is some rational function. Take F to be a polynomial in x_1, x_2, \dots, x_n .

Definition 3.2. The minimal polynomial for $F(\boldsymbol{x})$ over $\mathbb{Q}(\boldsymbol{y})$ is denoted $\Phi(z, \boldsymbol{y})$ and it is called the (general) Galois resolvent of H corresponding to $F(\boldsymbol{x})$.

The roots of $\Phi(z, \boldsymbol{y})$ are the conjugates of $F(\boldsymbol{x})$ over S_n . Hence, over $\mathbb{Q}(\boldsymbol{y})$,

$$\Phi(z, \boldsymbol{y}) = \prod_{h \in S} (z - hF(\boldsymbol{x}))$$

where S is the set of coset representatives of S_n/H , and

$$hF(\boldsymbol{x}) = F(h\boldsymbol{x})$$

where $h\mathbf{x} = (x_{h1}, x_{h2}, \dots, x_{hn})$ (i.e., applying the permutation to the indeterminates).

Claim 3.3. The coefficients of $\Phi(z, y)$ are polynomials in the elementary simple functions y_1, y_2, \ldots, y_n .

The general Galois resolvent can be specialized to the case of a given polynomial $f(x) \in \mathbb{Q}[x]$. Suppose f is monic such that

$$f(x) = x^n + a_1 x^{n-1} + \dots + a_n \in \mathbb{Q}[x]$$

and f has distinct roots $\alpha_1, \alpha_2, \ldots, \alpha_n$.

Definition 3.4. In definition 3.2, substitute $\boldsymbol{a} = (-a_1, a_2, \dots, (-1)^n a_n)$ for \boldsymbol{y} and $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n)$ for \boldsymbol{x} to obtain the following specialized Galois resolvent for a polynomial $f(x) \in \mathbb{Q}[x]$:

$$\Phi(z, \boldsymbol{a}) = \prod_{h \in S} (z - hF(\boldsymbol{\alpha}))$$

- The coefficients of $\Phi(z, \boldsymbol{a})$ are rational numbers.

3.2. The Galois resolvent of a quartic.

Let $f(x) \in K[x]$ be an irreducible monic quartic polynomial such that

$$f(x) = x^4 + ax^3 + bx^2 + cx + d$$

Definition 3.5. The resolvent cubic polynomial of f, denoted $R_3(x)$, is $R_3(x) = x^3 - bx^2 + (ac - 4d)x - (a^2d + c^2 - 4bd)$

Remark 3.6. The derivation of this formula involves looking at the roots of the quartic $f(x) = (x - r_1)(x - r_2)(x - r_3)(x - r_4)$. $R_3(x)$ is then created with roots in the splitting field $K(Z_f)$. An expression in the roots of f(x) which only has three possible images under the Galois group leads to the polynomial:

$$R_3(x) = (x - (r_1r_2 + r_3r_4))(x - (r_1r_3 + r_2r_4))(x - (r_1r_4 + r_2r_3))$$

Then, determining the coefficients of $R_3(x)$ in terms of the coefficients of f involves multiplying and factoring the above expression.

4. THE GALOIS GROUP OF A QUARTIC POLYNOMIAL

Let $f(x) \in K[x]$ be an irreducible quartic monic polynomial.

As f is irreducible, the Galois group of f is transitive on the roots of f by Theorem 2 (it is possible to get from one root to any other root by applying some element of the Galois group).

The only transitive subgroups of S_4 are as follows:

- (i) S_4
- (ii) Alternating group (order 12): A_4
- (iii) Klein-4 group: $V = \{1, (12)(34), (13)(24), (14)(23)\} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ • The Klein-4 group is a normal subgroup of S_4 .
- (iv) Cyclic group of order 4: $C_4 = \{1, (1234), (13)(24), (1432)\} \cong \mathbb{Z}/4\mathbb{Z}$ and its conjugates: • $\{1, (1324), (12)(34), (1423)\}$ and
 - $\{1, (1243), (14)(23), (1342)\}.$
- (v) Dihedral group of order 8: $D_8 = \{1, (1324), (12)(34), (1423), (13)(24), (14)(23), (12), (34)\}$ and its conjugates:
 - $\{1, (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)\};$ and
 - $\{1, (1243), (14)(23), (1342), (12)(34), (13)(24), (14), (23)\}.$

Note: The types of cycles determine the conjugacy classes.

Theorem 4. The following table characterizes the Galois group of an irreducible quartic polynomial in terms of its discriminant and resolvent cubic polynomial.

disc $f \in K$	$R_3(x) \in K[x]$	$\operatorname{Gal}(f)$
not \Box in K	irreducible in $K[x]$	S_4
\Box in K	irreducible in K[x]	A_4
not \Box in K	reducible in $K[x]$	D_8 or C_4
\Box in K	reducible in $K[x]$	V

TABLE 1.

Proof.

Row 1:

If disc f is not a \Box in K and $R_3(x)$ is irreducible over K, then $\operatorname{Gal}(f) \not\leq A_4$ by Corollary 2.4.

Now, $3 \mid |\operatorname{Gal}(f)|$ since $R_3(x)$ is irreducible over K and hence adding a root of $R_3(x)$ to K results in a cubic extension of K in $K(Z_f)$. Since the splitting field $K(Z_f)$ also contains $K(r_1)$ for a root r_1 of f, then $|\operatorname{Gal}(f)|$ is also divisible by 4. The only subgroups of S_4 with order divisible by 12 are S_4 and A_4 . Since $\operatorname{Gal}(f) \neq A_4$, then $\operatorname{Gal}(f) = S_4$.

Row 2:

Suppose disc f is a \Box in K and $R_3(x)$ is irreducible over K. Since disc $f = \Box$, then by Corollary 2.4, $\operatorname{Gal}(f) \leq A_4$. In the same way as row 1, 3 and 4 divide $|\operatorname{Gal}(f)|$. Hence, since $\operatorname{Gal}(f) \leq A_4$ and $12 || \operatorname{Gal}(f)|$, then $\operatorname{Gal}(f) = A_4$.

Row 3:

If disc f is not a \Box in K and $R_3(x)$ is reducible over K, then $\operatorname{Gal}(f) \not\leq A_4$ since disc $f \neq \Box$ by Corollary 2.4. Hence,

$$\operatorname{Gal}(f) = S_4, D_8, \text{ or } C_4$$

Claim 4.1. If Gal(f) has a 3-cycle, then $R_3(x)$ is irreducible.

Proof of claim: Suppose $\operatorname{Gal}(f)$ has a 3-cycle. Then, applying this 3-cycle to a root of the resolvent $R_3(x)$ yields all the distinct roots of $R_3(x)$ in a single orbit of $\operatorname{Gal}(f)$. This implies that $R_3(x)$ is irreducible over K.

In this row, $R_3(x)$ is reducible over K, hence by the claim it follows that Gal(f) has no 3-cycles. Since S_4 has 3-cycles, it follows that

$$\operatorname{Gal}(f) = D_8 \text{ or } C_4$$

Row 4:

Suppose disc f is a square in K and $R_3(x)$ is reducible over K. Again, since disc $f = \Box$, then by Corollary 2.4, $\operatorname{Gal}(f) \leq A_4$. Hence,

$$\operatorname{Gal}(f) = A_4 \text{ or } V$$

Since in this row, $R_3(x)$ is reducible, by claim 4.1, it follows that Gal(f) has no 3-cycles. Since A_4 has 3-cycles and V does not, then it follows that Gal(f) = V.

4.1. Distinguishing between C_4 and D_8 .

– Theorem 4 gives a useful charactierization of Galois groups of irreducible quartics. However, there is some ambiguity when disc $f \neq \Box$ and $R_3(x)$ is reducible. There is a further characterization that can be used to distinguish between these two subgroups.

Theorem 5. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quartic. If $\operatorname{Gal}(f) = C_4$, then disc f > 0.

Therefore, if $\operatorname{Gal}(f)$ is D_8 or C_4 and disc $f < 0 \Rightarrow \operatorname{Gal}(f) = D_8$.

Proof.

Suppose $\operatorname{Gal}(f) = C_4$. Since the splitting field of f(x) over \mathbb{Q} has degree 4, any root of f(x) generates an extension of \mathbb{Q} with degree 4. Thus, the field generated by one root of f contains all other roots as well. If f(x) has 1 real root, then it has 4 real roots. Hence, the number of real roots of f(x) is either 0 or 4.

If f(x) has 4 real roots, then disc f is the product of differences of nonzero real numbers, hence disc f > 0.

On the other hand, if f(x) has 0 real roots, then it has 4 complex roots that are two pairs of complex conjugates. Let $z, \overline{z}, w, \overline{w} \in \mathbb{C} \setminus \mathbb{R}$ be the roots. By definition, then $\sqrt{\text{disc } f}$ is given by

$$\sqrt{\operatorname{disc} f} = (z - \bar{z})(z - w)(z - \bar{w})(\bar{z} - w)(\bar{z} - \bar{w})(w - \bar{w})$$

$$\Rightarrow \quad \sqrt{\operatorname{disc} f} = |z - w|^2 |z - \bar{w}|^2 (z - \bar{z})(w - \bar{w})$$

Since $z \in \mathbb{C} \setminus \mathbb{R}$, then $z - \overline{z} = qi \in \mathbb{C}$ is imaginary and nonzero. In the same way, $w - \overline{w} = ri$ is imaginary and nonzero. Thus,

disc
$$f = |z - w|^4 |z - \bar{w}|^4 (qi)^2 (ri)^2 = |z - w|^4 |z - \bar{w}|^4 q^2 r^2 > 0$$

Thus, disc f > 0 in both cases.

- To fully distinguish between C_4 and D_8 , the following lemma will be used to show that in this case, the resolvent $R_3(x)$ has a unique root.

Lemma 4.2. If $f \in K[x]$ is a cubic polynomial with discriminant δ , and r is a root of f, then a splitting field of f over K is $K(Z_f) = K(r, \sqrt{\delta})$.

Proof. WLOG, suppose f is monic. Let r, r_2, r_3 be the roots of f. Write

$$f(x) = (x - r)g(x)$$

so r_2, r_3 are the roots of g(x). Hence, $g(r) \neq 0$. Using the quadratic formula for g(x) over K(r), then

$$K(r, r_2, r_3) = K(r)(r_2, r_3) = K(r)(\sqrt{\operatorname{disc} g})$$

Since f is monic, then so is g and hence

$$\operatorname{disc} f = g(r)^2 \operatorname{disc} g_8$$

$$\Rightarrow K(r, \sqrt{\operatorname{disc} g}) = K(r, \sqrt{\operatorname{disc} f})$$

That is, $K(Z_f) = K(r, \sqrt{\delta})$ for a cubic polynomial f with discriminant δ and root $r \in K$. \Box

- Lemma 4.2 tells us that if $\delta = \operatorname{disc} f \neq \Box$ in K and $R_3(x)$ is reducible over K, then $R_3(x)$ has a root in K but does not split completely over K (since disc $f \neq \Box$). Hence, $R_3(x)$ has a unique root r in K.

Theorem 6. (Kappe-Warren)

Let $f \in K[x]$ be an irreducible quartic where $\delta \neq \Box$ in K and $R_3(x) \in K[x]$ is reducible with a unique root $r \in K$. Then, if both polynomials $x^2 + ax + (b - r)$ and $x^2 - rx + d$ split over $K(\sqrt{\delta})$, then $\operatorname{Gal}(f) = C_4$. Otherwise, $\operatorname{Gal}(f) = D_8$.

- Kappe-Warren is a powerful tool in distinguishing between Galois groups C_4 and D_8 . Using this theorem, Table 1 can be completed into a full characterization as follows.

Corollary 4.3. If $f(x) = x^4 + ax^3 + bx^2 + cx + d \in K[x]$ is an irreducible quartic polynomial with disc $f = \delta$ and $R_3(x)$ its resolvent cubic, then the following characterization holds.

$\delta \in K$	$R_3(x) \in K[x]$	$(a^2 - 4(b - r))\delta$ and $(r^2 - 4d)\delta$	$\operatorname{Gal}(f)$
not \Box in K	irreducible in $K[x]$		S_4
\Box in K	irreducible in $K[x]$		A_4
not \Box in K	root $r \in K$	at least one is not \Box in K	D_8
not \Box in K	root $r \in K$	both are \Box in K	C_4
\Box in K	reducible in $K[x]$		V

TABLE 2.

Proof.

Referring to Kappe-Warren (6), the polynomials $g = x^2 + ax + (b - r)$ and $h = x^2 - rx + d$ split completely over $K(\sqrt{\delta})$ if and only if their discriminants disc $g = a^2 - 4(b - r)$ and disc $h = r^2 - 4d$ are squares in $K(\sqrt{\delta})$.

Claim 4.4. The discriminants disc $g = a^2 - 4(b - r)$ and disc $h = r^2 - 4d$ are either 0 or nonsquares in K.

Now, a nonsquare in K is a square in $K(\sqrt{\delta})$ if and only if its product with δ is a square. Hence, the desired polynomials g and h both split completely over $K(\sqrt{\delta})$ if and only if $\delta \cdot \operatorname{disc} g$ and $\delta \cdot \operatorname{disc} h$ are both square in K. That is, if both $\delta \cdot \operatorname{disc} g$ and $\delta \cdot \operatorname{disc} h$ are squares in K, then $\operatorname{Gal}(f) = C_4$, and otherwise the Galois group is D_8 .

Z Warning : The above characterizations of Galois groups of quartic polynomials rely on the fact that f must be irreducible over K. These results do not hold for reducible quartic polynomials.

5. Some example computations

This final section determines the Galois groups of irreducible quartic polynomials using the aforementioned results.

(1) The Galois groups of $f(x) = x^4 + px + p \in \mathbb{Q}[x]$ for all primes p > 2.

First, by Eisenstein's criterion, for any prime p, $f(x) = x^4 + px + p$ is irreducible over \mathbb{Q} .

For arbitrary p, the discriminant and cubic resolvent of f is as follows.

$$\delta = 256p^3 - 27p^4 = p^3(256 - 27p) \neq \square$$

$$R_3(x) = x^3 - 4px - p^2$$

Since $\delta \neq \Box$ for arbitrary p, it remains to analyze the resolvent for varying primes p.

Suppose p > 5. If $R_3(x)$ were reducible, then it would have a root dividing p^2 , i.e., $\pm 1, \pm p$ or $\pm p^2$.

$$R_{3}(1) = 1 - 4p - p^{2} < 0 \neq 0$$

$$R_{3}(-1) = -1 + 4p - p^{2} = -1 + p(4 - p) < 0 \text{ since } (4 - p) < 0$$

$$R_{3}(p) = p^{3} - 4p^{2} - p^{2} = p^{3} - 5p^{2} = p^{2}(p - 5) > 0 \text{ since } p > 5$$

$$R_{3}(-p) = -p^{3} + 4p^{2} - p^{2} = -p^{3} + 5p^{2} = p^{2}(5 - p) < 0 \text{ since } p > 5$$

$$R_{3}(p^{2}) = p^{6} - 4p^{3} - p^{2} = p^{2}(p^{4} - 4p - 1) > 0$$

$$R_{3}(-p^{2}) = -p^{6} + 4p^{3} - p^{2} = p^{2}(-p^{4} + 4p - 1) < 0$$

Hence, $R_3(x)$ is irreducible when p > 5. By Theorem 4, then $Gal(x^4 + px + p) = S_4$ for all primes p > 5.

Now, suppose p = 3. Then, $f(x) = x^4 + 3x + 3$ and $\delta = 4725$. The cubic resolvent is as follows.

$$R_3(x) = x^3 - 12x - 9$$

Then, $R_3(x)$ is reducible since $R_3(-3) = 0$, and thus $R_3(x)$ has a root, r = -3. Then, $Gal(x^4 + 3x + 3) = D_8$ or C_4 by Theorem 4.

To distinguish between D_8 and C_4 , by Corollary 4.3, it remains to compute $(a^2 - 4(b-r))\delta$ and $(r^2 - 4d)\delta$.

$$(a^2 - 4(b - r))\delta = -4(3)(4725) = -56700 \neq \Box$$

Since this is non-square in K, then $Gal(x^4 + 3x + 3) = D_8$ by Corollary 4.3.

Lastly, suppose p = 5. Then, $f(x) = x^4 + 5x + 5$ and $\delta = 15125$. Its cubic resolvent is

$$R_3(x) = x^3 - 20x - 25$$

Since $R_3(5) = 0$, then $R_3(x)$ is reducible with root r = 5. By Theorem 4, then $\operatorname{Gal}(x^4 + 5x + 5) = D_8$ or C_4 . By Corollary 4.3, it remains to determine whether the following values are squares in K.

$$(a^{2} - 4(b - r))\delta = -4(-5)(15125) = 302500 = (550)^{2} = \Box$$
$$(r^{2} - 4d)\delta = (25 - 4(5))(15125) = 75625 = (275)^{2} = \Box$$

As both above values are squares in \mathbb{Q} , then by Corollary 4.3, $\operatorname{Gal}(x^4+5x+5)=C_4$.

(2) $f(x) = x^4 - 7$

First, to use any of the results in the previous sections, it must be verified that $f(x) \in \mathbb{Q}[x]$ is indeed irreducible. By applying Eisenstein's criterion with p = 7, then f is irreducible over \mathbb{Z} , which implies that f is irreducible over \mathbb{Q} (since f is monic). It remains to compute the discriminant and cubic resolvent of f.

$$\delta = 256d^3 = 256(-7)^3 = -87808 \neq \square$$

$$R_3(x) = x^3 + 28x = x(x^2 + 28) = \text{ reducible over } \mathbb{Q}$$

Hence, by Theorem 4, $\operatorname{Gal}(f) = D_8$ or C_4 . By Theorem 5, since $\delta < 0$, then $\operatorname{Gal}(f) =$ D_8 .

(3) $f(x) = x^4 + x + 1$

In $\mathbb{F}_2[x]$,

 $f(x) - (x^4 - x) \equiv 1 \mod 2$

Then, f(x) is relatively prime to every irreducible polynomial over \mathbb{F}_2 that has degree dividing 2. Hence, f(x) cannot be factored over \mathbb{F}_2 . Thus, f is irreducible over \mathbb{Q} (by Proposition 9.12 in Dummit and Foote).

The discriminant and resovlent of f are as follows.

$$\delta = 256d^3 - 27c^4 = 256 - 27 = 229 \neq \square$$

$$R_3(x) = x^3 - 4dx - c^2 = x^3 - 4x - 1 = \text{ irreducible over } \mathbb{Q}$$

Note that $R_3(x)$ is irreducible since if it were reducible, it would have to have a root dividing 1 (i.e., ± 1), but $R_3(\pm 1) \neq 0$.

By Theorem 4, then $\operatorname{Gal}(f) = S_4$.

References

- [1] Keith Conrad. Galois groups of cubics and quartics (not in characteristic 2). Expository papers by K. Conrad, 2011.
- [2] Phyllis Lefton. Galois resolvents of permutation groups. *Classroom Notes, Manhattanville College*, pages 642–644, October 1977.