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Random graphs

What are random graphs?

a set of graphs + some (measurable) uncertainty

a set of graphs + a probability distribution



Random subgraphs of Km

• A random subset S ⊆ E := E(Km): a random variable that

assigns a probability to each subset of edges

• Equivalently, if E = [n] = {1, 2, . . . ,n}, then a random subset

S ⊆ E is a random element of P([n])



Generating polynomials

• Well-developed ([BBL09], [ALGV19]) dictionary

{probability distributions} ←→ {multivariate polynomials}

• def. For X a random subgraph, its generating polynomial is

FX :=
∑
S⊆E

P(X = S)xS

where xS =
∏

i∈S xi and x = (x1, . . . , xn)

• def. A nonzero polynomial F ∈ R[x1, x2, . . . , xn] is (real) stable if

it does not have any roots in the open upper half of the complex

planeH = {z ∈ C : Im(z) > 0}.



Guiding question

When is FX stable?



The first ideas and strides: Erdős-Rényi

• Erdős-Rényi graphs G(m, p) for m ∈ N, 0 < p < 1

1. Start with m vertices

2. Draw an edge between each pair of vertices with independent

probability p

• The giant component for mp→ c > 1

. All other components will contain at most O(log m) vertices

• Limitations: modelling complex systems

. Independence is uncommon in networks



Erdős-Rényi graphs

• For S ⊆ E , P(X = S) = p|S|(1− p)n−|S|

Proposition

If X is Erdős-Rényi, then FX =
∏

e∈[n](pxe + (1− p)) and this is a

stable polynomial.
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Dependence

• Each edge in the Erdős-Rényi model is independent of the rest

• Markov assumption: Adjacent edges are dependent

e

• def. A neighbourhood clique is a subset of pairwise dependent

edges.



Markov random graphs

• def. The Markov random graph model on P([n]) is:

P(X = G) ∝ exp

(
at3(G) +

∑
k<m

bksk(G)

)

. a, bk ∈ R : parameters

. t3(G) := # triangles in G

. sk(G) := # k-stars in G
3-startriangle

• Hammersley-Clifford theorem [Bré20]



Markov random graphs

Proposition

If n = 3 and a = 0, then FX is stable for any b1, b2 ∈ R.

Proposition

If n = 4, then the stability ofFX does not depend on the edge and

2-star parameters b1 and b2.



Exponential random graphs (ERGMs)

• We can define a more general model with the following
parameters:

. T > 0 : temperature parameter

. F : a finite set of test graphs H

. {aH}H∈F ∈ RF : a real parameter for each test graph

• def. nH (G) := # Inj(H ,G) = #{H ↪→ G}

• def. The exponential random graph model (ERGM) with the above

parameters is

P(X = GT ) ∝ exp

(
1

T
∑
H∈F

aH nH (G)

)
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Behaviour with respect to temperature

Variational Question 1

Fix {aH}H∈F . For which T is FGT stable?

Variational Question 2

Fix T . For which parameters {aH}H∈F is FGT stable?



Variational Question 1

Theorem 1

Let X be an ERGM. If aH > 0 for all H ∈ F and T > 0 is sufficiently

large, then FGT is stable.

• What about other parameter values and their relationship to the

temperature threshold?



Variational Question 2

Theorem 2

Let X be a Markov ERGM and fix T > 0. Then, FG is stable for one b2
iff it is stable for all b2.

Proof sketch:

• Replace subgraph counts with homomorphism counts [Lov12]

• hom(Sk ,G) =
∑

i∈V (G) deg(i)k−1

• hom(S2,G) = 2|E(G)|

• Specialize to a univariate polynomial [BBL09]

• Apply the Hermite-Sylvester theorem [Nat19]: a univariate

polynomial is real-rooted iff its Hermite matrix is positive

semidefinite



Thank you!



References I

N. Anari, K. Liu, S. O. Gharan, and C. Vinzant.

Log-concave polynomials ii: High-dimensional walks and an fpras for

counting bases of a matroid.

arXiv:1811.01816 [cs.DS], January 2019.

J. Borcea, P. Brändén, and T. M. Liggett.

Negative dependence and the geometry of polynomials.

Journal of the American Mathematical Society, 22(2):521–567, April

2009.

P. Brémaud.

Markov chains: Gibbs fields, Monte Carlo simulation, and queues.

Springer Nature Switzerland AG, second edition, May 2020.

https://arxiv.org/abs/1811.01816v3


References II

L. Lovász.

Large networks and graph limits.

American Mathematical Society Colloquium Publications,

December 2012.

M. B. Nathanson.

The hermite-sylvester crtierion for real-rooted polynomials.

arXiv:1911.01745v2 [math.CO], November 2019.

https://arxiv.org/abs/1911.01745v2

	Random graphs
	Encoding dependence
	The stability of ERGMs

