The geometry of random graphs with a Markov flavour

26th Ontario Combinatorics Workshop

Mohabat Tarkeshian

Western University

May 13, 2022

I. Random graphs

2. Encoding dependence

3. The stability of ERGMs

I. Random graphs

2. Encoding dependence

3. The stability of ERGMs

Random graphs

What are random graphs?

a set of graphs + some (measurable) uncertainty

a set of graphs + a probability distribution

Random subgraphs of K_m

- A random subset $S \subseteq E := E(K_m)$: a random variable that assigns a probability to each subset of edges
- Equivalently, if $E = [n] = \{1, 2, \dots, n\}$, then a random subset $S \subseteq E$ is a random element of $\mathcal{P}([n])$

Generating polynomials

• Well-developed ([BBL09], [ALGV19]) dictionary

 $\{\text{probability distributions}\} \longleftrightarrow \{\text{multivariate polynomials}\}$

• def. For X a random subgraph, its generating polynomial is

$$F_X := \sum_{S \subseteq E} P(X = S) \mathbf{x}^S$$

where $\mathbf{x}^S = \prod_{i \in S} x_i$ and $\mathbf{x} = (x_1, \dots, x_n)$

 def. A nonzero polynomial F ∈ ℝ[x₁, x₂,..., x_n] is (real) stable if it does not have any roots in the open upper half of the complex plane H = {z ∈ ℂ : lm(z) > 0}.

When is F_X stable?

The first ideas and strides: Erdős-Rényi

- Erdős-Rényi graphs G(m,p) for $m \in \mathbb{N}, 0$
 - I. Start with m vertices

- 2. Draw an edge between each pair of vertices with independent probability p
- The giant component for $mp \rightarrow c > 1$
 - ▷ All other components will contain at most $O(\log m)$ vertices
- · Limitations: modelling complex systems
 - Independence is uncommon in networks

Erdős-Rényi graphs

• For
$$S \subseteq E$$
, $P(X = S) = p^{|S|}(1 - p)^{n - |S|}$

Proposition

If X is Erdős-Rényi, then $F_X = \prod_{e \in [n]} (px_e + (1 - p))$ and this is a stable polynomial.

I. Random graphs

2. Encoding dependence

3. The stability of ERGMs

- Each edge in the Erdős-Rényi model is independent of the rest
- Markov assumption: Adjacent edges are dependent

• def. A neighbourhood clique is a subset of pairwise dependent edges.

Markov random graphs

• def. The Markov random graph model on $\mathcal{P}([n])$ is:

$$P(X = G) \propto \exp\left(at_3(G) + \sum_{k < m} b_k s_k(G)\right)$$

Hammersley-Clifford theorem [Bré20]

Markov random graphs

Proposition

If n = 3 and a = 0, then F_X is stable for any $b_1, b_2 \in \mathbb{R}$.

Proposition

If n = 4, then the stability of F_X does not depend on the edge and 2-star parameters b_1 and b_2 .

Exponential random graphs (ERGMs)

- We can define a more general model with the following parameters:
 - \triangleright T > 0: temperature parameter
 - \triangleright F : a finite set of test graphs H
 - ▷ $\{a_H\}_{H \in F} \in \mathbb{R}^F$: a real parameter for each test graph
- def. $n_H(G) := \# \operatorname{lnj}(H, G) = \# \{ H \hookrightarrow G \}$
- def. The exponential random graph model (ERGM) with the above parameters is

$$P(X = G_T) \propto \exp\left(\frac{1}{T}\sum_{H \in F} a_H n_H(G)\right)$$

I. Random graphs

2. Encoding dependence

3. The stability of ERGMs

Behaviour with respect to temperature

Variational Question I

Fix $\{a_H\}_{H \in F}$. For which T is F_{G_T} stable?

Variational Question 2

Fix T. For which parameters $\{a_H\}_{H \in F}$ is F_{G_T} stable?

Variational Question I

Theorem I

Let X be an ERGM. If $a_H > 0$ for all $H \in F$ and T > 0 is sufficiently large, then F_{G_T} is stable.

• What about other parameter values and their relationship to the temperature threshold?

Variational Question 2

Theorem 2

Let X be a Markov ERGM and fix T > 0. Then, F_G is stable for one b_2 iff it is stable for all b_2 .

Proof sketch:

- Replace subgraph counts with homomorphism counts [Lov12]
- hom $(S_k, G) = \sum_{i \in V(G)} \deg(i)^{k-1}$
- $\hom(S_2, G) = 2|E(G)|$
- Specialize to a univariate polynomial [BBL09]
- Apply the Hermite-Sylvester theorem [Nat19]: a univariate polynomial is real-rooted iff its Hermite matrix is positive semidefinite

Thank you!

References I

N. Anari, K. Liu, S. O. Gharan, and C. Vinzant.

Log-concave polynomials ii: High-dimensional walks and an fpras for counting bases of a matroid.

arXiv:1811.01816 [cs.DS], January 2019.

J. Borcea, P. Brändén, and T. M. Liggett.

Negative dependence and the geometry of polynomials.

Journal of the American Mathematical Society, 22(2):521–567, April 2009.

P. Brémaud.

Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Springer Nature Switzerland AG, second edition, May 2020.

References II

L. Lovász.

Large networks and graph limits.

American Mathematical Society Colloquium Publications,

December 2012.

M. B. Nathanson.

The hermite-sylvester crtierion for real-rooted polynomials. arXiv:1911.01745v2 [math.CO], November 2019.