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Random graphs

What are random graphs?

a set of graphs + some (measurable) uncertainty

a set of graphs + a probability distribution



Probability on a finite set

• Ω : a finite set

• X : Ω→ {0, 1} : discrete random variable

• P : Ω→ [0, 1] : a probability measure on Ω

. P(X = Ω) = 1



Random subgraphs

• G = (V ,E) : a finite (undirected) graph

• P(E) : power set of E

• A random subset S ⊆ E : a random variable X : P(E)→ {0, 1}
that assigns a probability to each subset of edges

. A random subset S ⊆ E is a random element of P(E)



Generating polynomials

• Well-developed ([BBL09], [ALGV19]) dictionary

{multivariate polynomials} ←→ {probability distributions}

• def. For X a random subgraph, its generating polynomial is

gX :=
∑
S⊆E

P(X = S)xS

where xS =
∏

i∈S xi and x = (xe)e∈E



Enhancing the dictionary

Operations

• Multiplication←→ disjoint union

. gX · gY = gXtY

• Partial differentiation←→ conditioning

. ∂igX =
∑

S3i P(X = S)xS\{i}

. i.e., X 7−→ (X | i ∈ S)

• Specialization←→ conditioning

. gX |xi=0 =
∑

S 63i P(X = S)xS

. i.e., X 7−→ (X | i /∈ S)



Enhancing the dictionary

Properties

• Positive coefficients←→ positive distribution

• Stability←→ negative dependence

. Modelling repelling particles

. Pairwise negative correlation: For i 6= j :

P(i, j ∈ S) ≤ P(i ∈ S) · P(j ∈ S)



Stable polynomials

• def. A nonzero polynomial g ∈ R[x] is (real) stable if it does not

have any roots in the open upper half of the complex plane

H = {z ∈ CE : Im(ze) > 0 for all e}.

• def. A probability distribution is strongly Rayleigh if gX is stable.

Proposition [Brä07]

A multiaffine polynomial g ∈ R[x] is stable if and only if for all x ∈ RE

and i, j ∈ E such that i 6= j ,

∂2g
∂xi∂xj

(x)g(x) ≤ ∂g
∂xi

(x) ∂g
∂xj

(x)



Lorentzian polynomials

• def. A subset J ⊆ NE is M -convex when it satisfies the symmetric

basis exchange property:

For any α, β ∈ J and an index i such that αi > βi , there exists an

index j such that αj < βj and α− ei + ej ∈ J and β− ej + ei ∈ J

Examples

. G = (V ,E) : a finite connected graph

I J = {spanning trees of G} ⊆ {0, 1}E

. M = matroid on a finite ground set E
I J = {bases of M}

. J = ∆d
E ⊆ NE

I d th discrete simplex
I Vectors with coordinate sum d



Lorentzian polynomials

• def. The support of a polynomial g ∈ R[x] is

supp(g) := {S ⊆ E : cS 6= 0} ⊆ NE

where g(x) =
∑

S⊆E cSxS

• def. A polynomial g ∈ R[x] is called positive if supp(g) = {0, 1}E



Lorentzian polynomials

• Notation

. H d
E : homogeneous polynomials of degree d in variables (xe)e∈E

. M d
E : polynomials in H d

E whose supports are M -convex

. L2
E ⊆ H 2

E : quadratic forms with non-negative coefficients that

have at most one positive eigenvalue

• def. A homogeneous polynomial h ∈ H d
E is Lorentzian if its

support is M -convex and ∂ih ∈ Ld−1
E for all i ∈ E . i.e., for d > 2:

Ld
E := {h ∈ M d

E : ∂ih ∈ Ld−1
E for all i ∈ E}



Lorentzian probability measures

• def. The homogenization of gX is

hX(z, x) :=
∑
S⊆E

P(X = S)z |E|−|S|xS

• def. A probability distribution is Lorentzian if hX is Lorentzian.

Proposition [BH20]

If X is strongly Rayleigh, then X is Lorentzian.



A word on negative dependence

Proposition [BBL09]

Strongly Rayleigh probability measures are strongly conditionally

negatively associated and pairwise negatively correlated.

Proposition [BH20]

Lorentzian probability measures are 2-Rayleigh: for all x ∈ RE
≥0 and

i, j ∈ E such that i 6= j ,

∂2g
∂xi∂xj

(x)g(x) ≤ 2

(
∂g
∂xi

(x) ∂g
∂xj

(x)
)



A word on negative dependence

• Negatively dependent probability measures have applications to

determinantal point processes and machine learning

([AGV21, KT12])

• Identifying negatively dependent measures ([Pem00])



Guiding question

When is gX stable or Lorentzian?



The first ideas and strides: Erdős-Rényi

• G = (V ,E) : finite

• Erdős-Rényi graphs G(p) for 0 < p < 1

1. Start with vertices V

2. Draw an edge between each pair of vertices with independent

probability p

• Limitations: modelling complex systems



Erdős-Rényi graphs

• For S ⊆ E , P(X = S) = p|S|(1− p)|E|−|S|

Proposition

If X is Erdős-Rényi, then gX =
∏

e∈E(pxe + (1− p)) and this is a stable

polynomial.
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Dependence

• Each edge in the Erdős-Rényi model is independent of the rest

How do we define a joint distribution where the random variables are

not independent?

• Markov assumption: Adjacent edges are dependent

e

• def. A neighbourhood clique is a subset of pairwise dependent

edges.



Markov random graphs

• G = (V ,E) : finite (undirected) graph with no self-loops

• def. The Markov random graph model on P(E) is:

P(X = GS) ∝ exp

at3(GS) +
∑
k≥1

bksk(GS)


. a, bk ∈ R : parameters

. t3(GS) := # triangles in GS

. sk(GS) := # k-stars in GS
3-startriangle

• def. The reduced Markov random graph is the above model

reduced to only considering the edge and 2-star parameters.



The Markov-Gibbs correspondence

{positive Markov random fields} ←→ {finite Gibbs distributions}

Hammersley-Clifford theorem (1971)

A collection of positive random variables satisfy a Markov property if

and only if it is a (finite) Gibbs distribution:

P(X = S) ∝ exp (−E(S))

where E is an energy function that encodes the neighbourhood

dependencies

• Every Gibbs distribution is positive



Cubic stable Markov random graphs

Proposition

If G = C3, then the Markov random graph model is stable if and only if

the triangle parameter a = 0.



Exponential random graphs (ERGMs)

• We can define a more general model with the following
parameters:

. T > 0 : temperature parameter

. F : a finite set of test graphs H

. {aH}H∈F ∈ RF : a real parameter for each test graph

• def. nH (GS) := # Inj(H ,GS) = #{H ↪→ GS}

• def. The exponential random graph model (ERGM) with the above

parameters is

P(X = GS) ∝ exp

(
1

T
∑
H∈F

aH nH (GS)

)
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Behaviour with respect to temperature

• X : an ERGM

Variational question 1

Fix {aH}H∈F . For which T is gX stable?

Variational question 2

Fix T . For which parameters {aH}H∈F is gX stable?



Variational question 1

Theorem 1

Let X be an ERGM. If aH > 0 for all H ∈ F , then limT→∞ gX is stable.



Variational question 2

Theorem 2

Let X be a reduced Markov ERGM and fix T > 0. Then, X is strongly

Rayleigh for any choice of parameters b1 and b2.

Proof sketch:

• Replace subgraph counts with homomorphism densities [Lov12]

• hom(Sk ,G) =
∑

i∈V (G) deg(i)k−1

• hom(S2,G) = 2|E(G)|
• Specialize to a univariate polynomial [BBL09]

• Apply the Hermite-Sylvester theorem [Nat19]: a univariate

polynomial is real-rooted iff its Hermite matrix is positive

semidefinite



ERGMs on cycle graphs

Corollary

If n > 3, G = Cn , and X is the Markov random graph model on G ,

then X is strongly Rayleigh for any choice of parameters b1 and b2.
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Lorentzian distributions and negative dependence

• Lorentzian is weaker than stability (but easier to test)

• Some negative dependence (i.e., the 2-Rayleigh property)

Proposition

If X is positive, then the support of hX is M -convex.

Corollary

If X is an ERGM, then the support of hX is M -convex.



Testing the Lorentzian condition for ERGMs

• Determining whether an ERGM is Lorentzian amounts to
determining the signature of quadratic forms

. Quadratic forms←→ square symmetric matrices

• Q : n × n symmetric matrix

• (n+(Q),n−(Q),n0(Q)) : the number of positive, negative, and

zero eigenvalues of Q



Testing the Lorentzian condition for ERGMs

• Q : n × n symmetric matrix

• Dk(Q) : leading k × k principal minor of Q

Proposition

If Dk(Q) 6= 0 for all k and D1(Q) > 0, then

n0(Q) = 0

n+(Q) =

∣∣∣∣{1 ≤ k ≤ n :
Dk(Q)

Dk−1(Q)
> 0

}∣∣∣∣
n−(Q) =

∣∣∣∣{1 ≤ k ≤ n :
Dk(Q)

Dk−1(Q)
< 0

}∣∣∣∣
where D0(Q) := 1.



Testing the Lorentzian condition for ERGMs

• A quadratic form satisfies the Lorentzian condition iff n0(Q) = 0

and n+(Q) ≤ 1

Corollary

If X is an ERGM and Q is a (relevant) quadratic form, then it satisfies the

Lorentzian condition iff Dk(Q) > 0 for all odd k and Dk(Q) < 0 for all

even k .



Lorentzian cubic Markov random graphs

Proposition

If G = C3 then the Markov random graph model is Lorentzian if and

only if the triangle parameter a < 9T
2 ln 2.

Proof sketch:

• For ease of notation, let B1 := exp
(

b1
3T

)
, B2 := exp

(
b2
9T

)
, and

A := exp
( a
27T
)

hX = z3+B2
1B2

2z2
(

3∑
i=1

xi

)
+B4

1B4
2z

 ∑
{i,j}∈[3]

xixj

+B6
1B6

2A6x1x2x3



Lorentzian cubic Markov random graphs: proof

• If Q0 =
∂
∂z hX , then

D1(Q0) = 3

D2(Q0) = −4B4
1B4

2 < 0

D3(Q0) = 5B8
1B8

2 > 0

D4(Q0) = −6B12
1 B12

2 < 0

• The first relevant quadratic form satisfies the coniditon for any

choice of edge and 2-star parameters b1 and b2



Lorentzian cubic Markov random graphs: proof

• For i ∈ [3], let Qi =
∂
∂xi

hX

D1(Qi) = B2
1B2

2 > 0

D2(Qi) = −B8
1B8

2 < 0

D3(Qi) = B14
1 B14

2 A6
(
2−A6

)
• The remaining quadratic forms Qi satisfy the Lorentzian condition

iff
2−A6 = 2− exp

(
2a
9T

)
> 0

a <
9T
2

ln 2



Future directions

• Sequences of graphs as V (G)→∞

• Alternating-sign models

• ERGMs on finite graphs: acyclic condition

. The random cluster model and the Tutte polynomial

• Connections to spin glass models and random matrix theory



Thank you!
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