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|. Random graphs



Random graphs

What are random graphs?
a set of graphs + some (measurable) uncertainty

a set of graphs + a probability distribution



Probability on a finite set

+ Q: afinite set

© X :Q —{0,1}: discrete random variable

* P:Q —[0,1]: a probability measure on
> P(X=Q)=1



Random subgraphs

* G =(V,E): afinite (undirected) graph

* P(E): power set of E
* A random subset S C E': arandom variable X : P(E) — {0,1}
that assigns a probability to each subset of edges
> A random subset S C F'is a random element of P(E)



Generating polynomials

* Well-developed ([ Inl ]) dictionary

{multivariate polynomials} +— {probability distributions}

¢ def. For X a random subgraph, its generating polynomial is

gx =Y _ P(X =8)x"
SCE

where x° = [[.cqz; and x = (2¢)ecr

€S



Enhancing the dictionary

Operations

* Multiplication <— disjoint union
> gx - 9y = gxuy

¢ Partial differentiation <— conditioning
> Oigx = Y. g5, P(X = §)xI\H
e, X — (X | i€ S)

* Specialization <— conditioning
> gxlam0 = Ygg P(X = 8)x®

e, X— (X ]i¢09)



Enhancing the dictionary

Properties
* Positive coefficients «— positive distribution

¢ Stability «<— negative dependence

> Modelling repelling particles

> Pairwise negative correlation: For ¢ # j:

P(i,je S)<P(ieS)-P(je?l)



Stable polynomials

* def. A nonzero polynomial g € R[x] is (real) stable if it does not
have any roots in the open upper half of the complex plane

H={z€C¥:Im(z)>0fral el

¢ def. A probability distribution is strongly Rayleigh if gx is stable.

Proposition

A multiaffine polynomial g € R[x] is stable if and only if for all x € R¥
and 7,7 € E such that 7 # j,

0%g dg , \ g
< -/
8%‘8%‘ * g(X) — Ox; a 8:6]' (X)




Lorentzian polynomials

« def. A subset J C N¥ is M-convex when it satisfies the symmetric

basis exchange property:

Forany a, 8 € J and an index i such that a;; > 3;, there exists an

index j suchthat aj < Bjanda—e;+ej € Jand B —ej+e; € J

> G = (V,E): afinite connected graph
> J = {spanning trees of G} C {0,1}”

> M = matroid on a finite ground set
> J = {bases of M}

> J=A% CNF
> d" discrete simplex

P Vectors with coordinate sum d



Lorentzian polynomials

* def. The support of a polynomial g € R[x] is
supp(g) := {SC E:cg #0} CNF

where g(x) = > g csx”

« def. A polynomial g € R[x] is called positive if supp(g) = {0, 1}



Lorentzian polynomials

* Notation

> HE: homogeneous polynomials of degree d in variables (7.)cc &
> M polynomials in Hf whose supports are M-convex

> L2, C HZ: quadratic forms with non-negative coefficients that

have at most one positive eigenvalue

¢ def. A homogeneous polynomial h & Hg is Lorentzian if its

support is M-convex and 9;h € L%_l foralli e E. ie, ford > 2

LY :={he Mp:0;hc Li foralic E}



Lorentzian probability measures

¢ def. The homogenization of gy is

hx(z,x) = Z P(X = 9)zIP1-181xS
SCE

* def. A probability distribution is Lorentzian if hx is Lorentzian.

Proposition

If X is strongly Rayleigh, then X is Lorentzian.




A word on negative dependence

Proposition

Strongly Rayleigh probability measures are strongly conditionally

negatively associated and pairwise negatively correlated.

Proposition

Lorentzian probability measures are 2-Rayleigh: for all x € Rgo and
1,7 € F such that ¢ # j,

0 <2 (52005 )




A word on negative dependence

* Negatively dependent probability measures have applications to
determinantal point processes and machine learning

(0 K1)

* ldentifying negatively dependent measures ([ D



Guiding question

When is gx stable or Lorentzian?



The first ideas and strides: Erd&s-Rényi

« G=(V,E): finite
* Erd8s-Rényi graphs G(p) for0 < p < 1
|. Start with vertices V

O

2. Draw an edge between each pair of vertices with independent

probability p

¢ Limitations: modelling complex systems



Erd&s-Rényi graphs

If X is Erd&s-Rényi, then gx = [].c5(p2e + (1 — p)) and this is a stable

polynomial.
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Dependence
¢ Each edge in the Erd&és-Rényi model is independent of the rest

How do we define a joint distribution where the random variables are

not independent?

* Markov assumption: Adjacent edges are dependent

e

* def. A neighbourhood clique is a subset of pairwise dependent

edges.



Markov random graphs

* G = (V,E): finite (undirected) graph with no self-loops
* def. The Markov random graph model on P(E) is:

P(X = Gg) exp | at3(Gs) + Y besi(Gy)

k>1
> @, by € R: parameters
> t3(Gg) 1= # triangles in Gg
> s,(Gg) = # k-starsin Gg
triangle 3-star

¢ def. The reduced Markov random graph is the above model

reduced to only considering the edge and 2-star parameters.



The Markov-Gibbs correspondence

{positive Markov random fields} <— {finite Gibbs distributions}

Hammersley-Clifford theorem (1971)

A collection of positive random variables satisfy a Markov property if

and only if it is a (finite) Gibbs distribution:
P(X =5) xexp(—£(9))

where & is an energy function that encodes the neighbourhood

dependencies

¢ Every Gibbs distribution is positive



Cubic stable Markov random graphs

If G = C3, then the Markov random graph model is stable if and only if

the triangle parameter a = 0.



Exponential random graphs (ERGMs)

* We can define a more general model with the following
parameters:

> T > 0:temperature parameter
> F': afinite set of test graphs H

> {ag}ger € RY : areal parameter for each test graph
© def. ny(Gyg) == #Inj(H, Gs) = #{H — Gg}
¢ def. The exponential random graph model (ERGM) with the above

parameters is

P(X = Gg) o exp (; Z aHnH(GS)>

HeF
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Behaviour with respect to temperature

* X :an ERGM

Variational question |

Fix {ag } gep. For which T'is gx stable?

Variational question 2

Fix T. For which parameters {ag } ger is gx stable?



Variational question |

Let X be an ERGM. If ay > Oforall H € F, then limy_,, gx is stable.




Variational question 2

Let X be a reduced Markov ERGM and fix T" > 0. Then, X is strongly

Rayleigh for any choice of parameters by and bs.

Proof sketch:
* Replace subgraph counts with homomorphism densities [Lov| 2]
* hom(Sk, G) = X iev(a) deg(i)F1
* hom(S2, G) = 2|E(G)|
¢ Specialize to a univariate polynomial [BBL07]
* Apply the Hermite-Sylvester theorem [Nat| 9]: a univariate
polynomial is real-rooted iff its Hermite matrix is positive

semidefinite



ERGMs on cycle graphs

Corollary

Ifn >3, G= C, and X is the Markov random graph model on G,

then X is strongly Rayleigh for any choice of parameters b; and bs.
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Lorentzian distributions and negative dependence

¢ Lorentzian is weaker than stability (but easier to test)

* Some negative dependence (i.e., the 2-Rayleigh property)

Proposition

If X is positive, then the support of hx is M-convex.

Corollary

If X is an ERGM, then the support of hx is M-convex.




Testing the Lorentzian condition for ERGMs

* Determining whether an ERGM is Lorentzian amounts to

determining the signature of quadratic forms

> Quadratic forms <— square symmetric matrices
* () n X nsymmetric matrix

* (n4(Q), n—(Q), no(Q)) : the number of positive, negative, and

zero eigenvalues of @



Testing the Lorentzian condition for ERGMs

* @ n X nsymmetric matrix

* Di(Q) : leading k x k principal minor of @

If Di(Q) # 0forall kand D1(Q) > 0, then

no(Q) =0
- [feren 25
n(@= {1z i <o}

where Dy(@Q) := 1.



Testing the Lorentzian condition for ERGMs

* A quadratic form satisfies the Lorentzian condition iff ng(@Q) = 0
and ny (Q) <1

Corollary

If X isan ERGMand @ is a (relevant) quadratic form, then it satisfies the

Lorentzian condition iff Dg(Q) > 0 for all odd &k and Dy (Q) < 0 for all
even k.



Lorentzian cubic Markov random graphs

Proposition

If G = C5 then the Markov random graph model is Lorentzian if and

- - 9T
only if the triangle parameter a < =5~ In 2.

Proof sketch:
¢ For ease of notation, let By := exp (—%) By :=exp <_?F> and
A= exp (577)

3
hyx = 25+ B2 B3 2> (Z $Z> +B{B3z Z z;7; | +BY BS A%w 1o
=1 {igte



Lorentzian cubic Markov random graphs: proof

* If Qo = Zhx, then

Di(Qv) =3

D2(Qo) = —4B{B; <0
D3(Qo) = 5BYB; >0
Dy(Qo) = —6B2Bi? <0

¢ The first relevant quadratic form satisfies the coniditon for any

choice of edge and 2-star parameters by and b9



Lorentzian cubic Markov random graphs: proof

* Forie 3] let Q; = %hx

Di(Q;) = B?B2 >0
Dy(Qi) = —B{B; <0
D3(Q;) = B{*By*A° (2 — A%)

¢ The remaining quadratic forms (); satisfy the Lorentzian condition
iff 94
2-A=2- >0
P (9 T)

9T
a < 71112



Future directions

* Sequences of graphs as V(G) — oo

¢ Alternating-sign models

* ERGMs on finite graphs: acyclic condition

> The random cluster model and the Tutte polynomial

¢ Connections to spin glass models and random matrix theory



Thank youl
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